Skip to main content
Log in

Ultrasonic Imaging in Hot Liquid Sodium Using a Plate-Type Ultrasonic Waveguide Sensor

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

This paper reports the first set of results from ultrasonic measurements for determining the imaging capability of a plate-type ultrasonic waveguide sensor in \(200\,^{\circ }\)C liquid sodium. This 10-m long plate-type waveguide sensor has been developed for viewing objects in opaque liquid sodium coolant for the applications in a sodium-cooled fast reactor (a next generation nuclear reactor). Various imaging capabilities of the waveguide sensor have already been demonstrated in water including ultrasonic beam steering, high resolution C-scan, and so on. However, water and liquid sodium have different acoustic properties and, more importantly, different wetting characteristics with stainless steel—the material for the waveguide sensor. For applications of the developed waveguide sensor in a real reactor environment, this research performs a set of necessary ultrasonic measurements in liquid sodium. The end section of the waveguide sensor which radiates an ultrasonic beam into the liquid sodium is coated with thin beryllium and nickel layers which can significantly improve the ultrasonic beam quality and wetting property of the stainless steel. A liquid sodium facility that consists of a glove box system, a sodium test tank, and an argon purification system has been built. The resolution and beam property are determined from ultrasonic C-scan experiments; a signal-to-noise ratio of over 10 dB and the resulting detection of a 1 mm wide slit can be achieved. The inherent issues associated with wetting of the waveguide sensor in liquid sodium are discussed based on the ultrasonic imaging results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Mannan, S.L., Chetal, S.C., Raj, B., Bhoje, S.B.: Selection of materials for prototype fast breeder reactor. Trans. Indian Inst. Met. 56, 155–178 (2003)

    Google Scholar 

  2. ASME: ASME Boiler and Pressure Vessel Code, Section XI, Rules for Inservice Inspection of Nuclear Power Plant Components. The American Society of Mechanical Engineers, New York (1992)

  3. Ord, N.R., Smith, R.W.: Development of an Under-Sodium Ultrasonic Scanner for In-Reactor Surveillance. HEDL-TME 72-91, Hanford Engineering Development Laboratory, Richland, WA (1972)

    Book  Google Scholar 

  4. Day, C.K., Smith, R.W.: Under-sodium viewing. In: de Klerk, J. (ed.) Ultrasonics Symposium, pp. 191–194. IEEE, New York (1973)

  5. Barrett, L.M., Mcknight, J.A., Fothergill, J.R.: Ultrasonic viewing in fast reactors. Phys. Technol. 15, 308–314 (1984)

    Article  Google Scholar 

  6. Swaminathan, K., Rajendran, A., Elumalai, G.: The development and deployment of an ultrasonic under-sodium viewing system in the fast breeder test reactor. IEEE Trans. Nucl. Sci. 37, 1571–1577 (1990)

    Article  Google Scholar 

  7. Karasawa, H., Izumi, M., Suzuki, T., Nagai, S., Tamura, M., Fujimori, S.: Development of under-sodium three-dimensional visual inspection technique using matrix-arrayed ultrasonic transducer. J. Nucl. Sci. Technol. 37, 769–779 (2000)

    Article  Google Scholar 

  8. Kazys, R., Voleisis, A., Sliteris, R., Voleisiene, B., Mazeika, L., Kupschus, P.H., Abderrahim, H.A.: Development of ultrasonic sensors for operation in a heavy liquid metal. IEEE Sens. J. 6, 1134–1143 (2006)

    Article  Google Scholar 

  9. Swaminathan, K., Asokane, C., Sylvia, J.I., Kalyanasundaram, P., Swaminathan, P.: An ultrasonic scanning technique for in-situ ‘bowing’ measurement of prototype fast breeder reactor fuel sub-assembly. IEEE Trans. Nucl. Sci. 59, 174–181 (2012)

    Article  Google Scholar 

  10. Bourdais, F.L., Marchand, B.: Development of electromagnetic acoustic transducer (EMAT) phased arrays for SFR inspection. In: 40th Annual Review of Progress in Quantitative Nondestructive Evaluation: Incorporating the 10th International Conference on Barkhausen Noise and Micromagnetic Testing. AIP Publishing, pp. 1022–1029 (2014)

  11. Watkins, R.D., Deighton, M.O., Gillespie, A.B., Pike, R.B.: A proposed method for generating and receiving narrow beams of ultrasound in the fast reactor liquid sodium environment. Ultrasonics 20, 7–12 (1982)

    Article  Google Scholar 

  12. Sheen, S.H., Chien, H.T., Wang, K., Lawrence, W.P., Engel, D.M.: Linear-array ultrasonic waveguide transducer for under sodium viewing. Report ANL-GENIV-178, Argonne National Laboratory (2010)

  13. Wang, K., Chien, H.T., Elmer, T.W., Lawrence, W.P., Engel, D.M., Sheen, S.H.: Development of ultrasonic waveguide techniques for under-sodium viewing. NDT&E Int. 49, 71–76 (2012)

    Article  Google Scholar 

  14. Joo, Y.S., Lim, S.H., Park, C.G., Lee, J.H.: Feasibility study on ultrasonic waveguide sensor for under-sodium viewing of reactor internals in sodium-cooled fast reactor. J. Korean Soc. Nondestruct. Test. 28, 364–371 (2008)

    Google Scholar 

  15. Joo, Y.S., Park, C.G., Lee, J.H., Kim, J.B., Lim, S.H.: Development of ultrasonic waveguide sensor for under-sodium inspection in a sodium-cooled fast reactor. NDT&E Int. 44, 239–246 (2011)

    Article  Google Scholar 

  16. Joo, Y.S., Bae, J.H., Kim, J.B., Kim, J.Y.: Effect of beryllium coating layer on performance of the ultrasonic waveguide sensor. Ultrasonics 53, 387–395 (2013)

    Article  Google Scholar 

  17. Graff, K.F.: Wave Motion in Elastic Solids. Dover Publication, Inc., New York (1991)

    Google Scholar 

  18. Rose, J.L.: Ultrasonic Waves in Solid Media. Cambridge University Press, New York (1999)

    Google Scholar 

  19. Pavlakovic, B., Lowe, M., Alleyne, D., Cawley, P.: DISPERSE: a general purpose program for creating dispersion curves. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative NDE, vol. 16, pp. 185–192. Plenum Press, New York (1997)

    Google Scholar 

  20. Ceglar, F.B.: Energy concentration at the center of large aspect ratio rectangular waveguides at high frequencies. J. Acoust. Soc. Am. 123, 4218–4226 (2008)

    Article  Google Scholar 

  21. Hayashi, T., Song, W.J., Rose, J.L.: Guided wave dispersion curves for a bar with an arbitrary cross-section, a rod and rail example. Ultrasonics 41, 175–183 (2003)

    Article  Google Scholar 

  22. Wessels, J.: Inservice inspection of the reactor block of sodium-cooled fast breeder reactors. Nucl. Eng. Des. 130, 33–42 (1991)

    Article  Google Scholar 

  23. Griffin, J.W., Bond, L.J., Peters, T.J., Denslow, K.M., Posakony, G.J., Sheen, S.H., Chien, H.T., Raptis, A.C.: Under-Sodium Viewing: A Review of Ultrasonic Imaging Technology for Liquid Metal Fast Reactors. PNNL-18292, Pacific Northwest National Laboratory (2009)

  24. Kawaguchi, M., Tagawa, A., Miyahara, S.: Reactive wetting of metallic plated steels by liquid sodium. J. Nucl. Sci. Technol. 48, 499–503 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation (NRF: No 2012M2A8A2010642) grant funded by the Korea government (Ministry of Science, ICT and Future Planning). Comments of Dr. Jin-Yeon Kim (Georgia Institute of Technology) on this work are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Sang Joo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, HW., Joo, YS., Park, CG. et al. Ultrasonic Imaging in Hot Liquid Sodium Using a Plate-Type Ultrasonic Waveguide Sensor. J Nondestruct Eval 33, 676–683 (2014). https://doi.org/10.1007/s10921-014-0262-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10921-014-0262-8

Keywords

Navigation