Skip to main content

Advertisement

Log in

Characterizing Awake and Anesthetized States Using a Dimensionality Reduction Method

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Distinguishing between awake and anesthetized states is one of the important problems in surgery. Vital signals contain valuable information that can be used in prediction of different levels of anesthesia. Some monitors based on electroencephalogram (EEG) such as the Bispectral (BIS) index have been proposed in recent years. This study proposes a new method for characterizing between awake and anesthetized states. We validated our method by obtaining data from 25 patients during the cardiac surgery that requires cardiopulmonary bypass. At first, some linear and non-linear features are extracted from EEG signals. Then a method called “LLE”(Locally Linear Embedding) is used to map high-dimensional features in a three-dimensional output space. Finally, low dimensional data are used as an input to a quadratic discriminant analyzer (QDA). The experimental results indicate that an overall accuracy of 88.4 % can be obtained using this method for classifying the EEG signal into conscious and unconscious states for all patients. Considering the reliability of this method, we can develop a new EEG monitoring system that could assist the anesthesiologists to estimate the depth of anesthesia accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mortier, E.P., and Struys, M.M.R., Monitoring the depth of anaesthesia using bispectral analysis and closed-loop controlled administration of propofol. Best Pract. & Res. Clin. Anaesthesiology. 15(1):83–96, 2001.

    Article  CAS  Google Scholar 

  2. Sinha, P.K., and Koshy, T., Monitoring devices for measuring the depth of anaesthesia-an overview. Indian J. Anaesthesia. 51(5):365–381, 2007.

    Google Scholar 

  3. Shalbaf, R., Behnam, H., Sleigh, J., Steyn-Ross, A., and Voss, L., Monitoring the depth of anesthesia using entropy features and an artificial neural network. J. Neurosci. Methods. 218(1):17–24, 2013.

    Article  PubMed  Google Scholar 

  4. Gugino, L.D., Chabot, R.J., Prichep, L.S., John, E.R., Formanek, V., and Aglio, L.S., Quantitative EEG changes associated with loss and return of consciousness in healthy adult volunteers anaesthetized with propofol or sevoflurane. Br. J. Anaesth. 87(3):421–428, 2001.

    Article  PubMed  CAS  Google Scholar 

  5. Rampil, I.J., A primer for EEG signal processing in anesthesia. Anesthesiology. 89:980–1002, 1998.

    Article  PubMed  CAS  Google Scholar 

  6. Schwender, D., Daunerer, M., Klasing, S., Finsterer, U., and Peter, K., Power spectral analysis of the electroencephalogram during increasing end-expiratory concentrations of isoflurane and sevoflurane. Anesthesiology. 53:335–342, 1998.

    CAS  Google Scholar 

  7. Hosseini, P.T., Shalbaf, R., and Nasrabadi, A.M., Extracting a seizure intensity index from one-channel EEG signal using bispectral and detrended fluctuation analysis. J. Biomed. Sci. Eng. 3:253–261, 2010.

    Article  Google Scholar 

  8. Shalbaf, R., Behnam, H., Sleigh, J.W., Steyn-Ross, D.A., and Steyn-Ross, M.L., Frontal-temporal synchronization of EEG signals quantified by order patterns cross recurrence analysis during propofol anesthesia. IEEE Trans. Neural Syst. Rehabil. Eng. 23:468–474, 2015.

    PubMed  Google Scholar 

  9. Viertiö-Oja, H., Maja, V., Särkelä, M., Talja, P., Tenkanen, N., et al., Description of the entropy algorithm as applied in the datex-ohmeda S/5 entropy module. Acta Anaesth. Scand. 48(2):154–161, 2004.

    Article  PubMed  Google Scholar 

  10. Paul, D.B., and Rao, G.S.U., Correlation of bispectral index with glasgow coma score in mild and moderate head injuries. J. Clin. Monit. Comput. 20(6):399–404, 2006.

    Article  PubMed  Google Scholar 

  11. Kortelainen, J., Vayrynen, E., and Seppanen, T., Isomap approach to EEG-based assessment of neurophysiological changes during anesthesia. IEEE Trans. Neural Syst Rehabil Eng. 19:113–120, 2011.

    Article  PubMed  Google Scholar 

  12. Lopour, A.B., Tasoglu, S., Kirsch, H.E., Sleigh, J.W., and Szeri, A.J., A continuous mapping of sleep states through association of EEG with a mesoscale cortical model. J. Comput. Neurosci. 30:471–487, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dodge Y (2003) The Oxford Dictionary of Statistical Terms. ISBN 0–19-920613-9

  14. MacKay, E.C., Sleigh, J.W., Voss, L.J., and Barnard, J.P., Episodic waveforms in the electroencephalogram during general anaesthesia: a study of patterns of response to noxious stimuli. Anaesth. Intensive Care. 38(1):102–112, 2010.

    PubMed  CAS  Google Scholar 

  15. Olofsen, E., WSleigh, J., and Dahan, A., Permutation entropy of the electroencephalogram: a measure of anesthetic drug effect. Br. J. Anaesth. 101:810–821, 2008.

    Article  PubMed  CAS  Google Scholar 

  16. Shalbaf, R., Behnam, H., Sleigh, J., and Voss, L., Measuring the effects of sevoflurane on electroencephalogram using sample entropy. Acta Anaesthesiol. Scand. 56:880–889, 2012.

    Article  PubMed  CAS  Google Scholar 

  17. Roweis, S.T., and Saul, L.K., Nonlinear dimensionality reduction by locally linear embedding. Science. 290:2323–2326, 2000.

    Article  PubMed  CAS  Google Scholar 

  18. Ataee P, Yazdani A, Setarehdan S, Noubari HA (2007) Manifold learning applied on EEG signal of the epileptic patients for detection of normal and pre-seizure states. Engineering in Medicine and Biology Society, EMBS 2007. 29th Annual International Conference of the IEEE, 5489–5492, 2007.

  19. Alizadeh-Sani, Z., Shalbaf, A., Behnam, H., and Shalbaf, R., Automatic computation of left ventricular volume change from echocardiography images using nonlinear dimensionality reduction. J. Digit. Imaging. 28:91–98, 2015.

  20. Saul, L.K., Roweis, S.T., and Singer, Y., Think globally, fit locally: unsupervised learning of low dimensional manifolds. J. Mach. Learn. Res. 4:119–155, 2003.

    Google Scholar 

  21. Saul, L.K., and Roweis, S.T., Nonlinear dimensionality reduction by locally linear embedding. Science. 290:2323–2326, 2000.

    Article  PubMed  Google Scholar 

  22. Roweis ST, Saul LK (2009) Locally linear embedding. http://www.cstorontoedu/roweis/lle/

  23. Cheng LL, Sako H, Fujisawa H (2002) Learning quadratic discriminant function for handwritten character classification. Pattern Recognition, 2002. Proceedings. 16th International Conference on (Volume:4 ), 44–47, 2002.

  24. Shalbaf, R., Behnam, H., and Moghadam, H.J., Monitoring depth of anesthesia using combination of EEG measure and hemodynamic variables. Cogn. Neurodyn. 9:41–51, 2015.

    Article  PubMed  CAS  Google Scholar 

  25. Bostanov, V., BCI competition 2003—data sets ib and iib: feature extraction from event-related brain potentials with the continuous wavelet transform and the t-value scalogram. IEEE Trans. Biomed. Eng. 51:57–61, 2004.

    Article  Google Scholar 

  26. Hagihira, S., Takashina, M., Mori, T., Mashimo, T., and Yoshiya, I., Practical issues in bispectral analysis of electroencephalographic signals. Anesth. Analg. 93:966–970, 2001.

    Article  PubMed  CAS  Google Scholar 

  27. Shalbaf, R., Behnam, H., Sleigh, J.W., and Voss, L.J., Using the Hilbert-Huang transform to measure the electroencephalographic effect of propofol. Physiol. Meas. 33(2):271–285, 2012.

  28. Muncaster, A., Sleigh, J., and Williams, M., Changes in consciousness, conceptual memory, and quantitative electroencephalographical measures during recovery from sevoflurane- and remifentanilbased anesthesia. Anesth. Analg. 96:720–725, 2003.

    Article  PubMed  CAS  Google Scholar 

  29. Johansen, J.W., and Sebel, P.S., Effects of the anesthetic agent propofol on neural populations. Cogn. Neurodyn. 4(37–59), 2000.

  30. Sleigh, J.W., and Donovan, J., Comparison of the bispectral index, 95 % spectral edge frequency and approximate entropy of the EEG, with changes in heart rate variability during induction and recovery from general anaesthesia. Br J. Anesth. 82:666–671, 1999.

    Article  CAS  Google Scholar 

  31. Pilge, S., Zanner, R., Schneider, G., Blum, J., Kreuzer, M., and Kochs, E.F., Time delay of index calculation: analysis of cerebral state, bispectral, and narcotrend indices. Anesthesiology. 104:488–494, 2006.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Behnam.

Additional information

This article is part of the Topical Collection on Systems-Level Quality Improvement

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirsadeghi, M., Behnam, H., Shalbaf, R. et al. Characterizing Awake and Anesthetized States Using a Dimensionality Reduction Method. J Med Syst 40, 13 (2016). https://doi.org/10.1007/s10916-015-0382-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-015-0382-4

Keywords

Navigation