Skip to main content
Log in

Mixed Volume Element-Characteristic Fractional Step Difference Method for Contamination from Nuclear Waste Disposal

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A nonlinear system with boundary-initial value conditions of convection–diffusion partial differential equations is presented to describe incompressible nuclear waste disposal contamination in porous media. The flow pressure is determined by an elliptic equation, the concentrations of brine and radionuclide are formulated by convection–diffusion equations, and the transport of temperature is defined by a heat equation. The pressure appears in convection–diffusion equations and heat equation in the form of Darcy velocity and controls the physical processes. The fluid pressure and velocity are solved by the conservative mixed volume element and the computation accuracy of Darcy velocity is improved one order. A combination method of the mixed volume element and the approximation of characteristics is applied to solve the brine and heat, where the diffusion is discretized by a mixed volume element method and the convection is treated by the method of characteristics. The characteristics can confirm strong computation stability at sharp fronts and it can avoid numerical dispersion and nonphysical oscillation. Larger time-steps along the characteristics are shown to result in smaller time-truncation errors than those resulting from standard methods. The mixed volume element method has the property of conservation on each element and it can obtain numerical solutions of the brine and adjoint vectors. The radionuclide is solved by a coupled method of characteristics and fractional step difference. The computational work is reduced greatly by decomposing a three-dimensional problem into three successive one-dimensional problems and using the algorithm of speedup. Using numerical analysis of priori estimates of differential equations, we demonstrate an optimal second order estimate in \(l^2\) norm. Numerical data are appropriate with the scheme and it is shown that the method is a powerful tool to solve the well-known problems in porous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Arbogast, T., Wheeler, M.F.: A characteristics-mixed finite element methods for advection-dominated transport problems. SIAM J. Numer. Anal. 32(2), 404–424 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bell, J.B., Dawson, C.N., Shubin, G.R.: An unsplit high-order Godunov scheme for scalar conservation laws in two dimensions. J. Comput. Phys. 74, 1–24 (1988)

    Article  MATH  Google Scholar 

  4. Cai, Z.: On the finite volume element method. Numer. Math. 58, 713–735 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cai, Z., Jones, J.E., Mccormilk, S.F., Russell, T.F.: Control-volume mixed finite element methods. Comput. Geosci. 1, 289–315 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cella, M.A., Russell, T.F., Herrera, I., Ewing, R.E.: An Eulerian–Lagrangian localized adjoint method for the advection–diffusion equations. Adv. Water Resour. 13(4), 187–206 (1990)

    Article  Google Scholar 

  7. Chou, S.H., Kawk, D.Y., Vassileviki, P.: Mixed volume methods on rectangular grids for elliptic problem. SIAM J. Numer. Anal. 37, 758–771 (2000)

    Article  MathSciNet  Google Scholar 

  8. Chou, S.H., Kawk, D.Y., Vassileviki, P.: Mixed volume methods for elliptic problems on trianglar grids. SIAM J. Numer. Anal. 35, 1850–1861 (1998)

    Article  MathSciNet  Google Scholar 

  9. Chou, S.H., Vassileviki, P.: A general mixed covolume frame work for constructing conservative schemes for elliptic problems. Math. Comput. 12, 150–161 (2003)

    Google Scholar 

  10. Dawson, C.N., Russell, T.F., Wheeler, M.F.: Some improved error estimates for the modified method of characteristics. SIAM J. Numer. Anal. 26(6), 1487–1512 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Douglas, Jr., J.: Simulation of miscible displacement in porous media by a modified method of characteristic procedure. In Numerical Analysis, Dundee 1981. Lecture Notes in Mathematics, 912. Springer, Berlin (1982)

  12. Douglas Jr., J.: Finite difference method for two-phase in compressible flwo in porous media. SIAM J. Numer. Anal. 4, 681–696 (1983)

    Article  Google Scholar 

  13. Douglas Jr., J., Ewing, R.E., Wheeler, M.F.: Approximation of the pressure by a mixed method in the simulation of miscible displacement. RAIRO Anal. Numer. 17(1), 17–33 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  14. Douglas Jr., J., Ewing, R.E., Wheeler, M.F.: A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media. RAIRO Anal. Numer. 17(3), 249–265 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Douglas, Jr. J., Yuan, Y.R.: Numerical simulation of immiscible flow in porous media based on combining the method of characteristics with mixed finite element procedure. Numerical Simulation in Oil Recovery, pp. 119–132. Springer, New York (1986)

  16. Ewing, R.E.: The Mathematics of Reservoir Simulation. SIAM, Philadelphia (1983)

    Book  MATH  Google Scholar 

  17. Ewing, R.E., Russell, T.F., Wheeler, M.F.: Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics. Comput. Methods Appl. Mech. Eng. 47(1–2), 73–92 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ewing, R.E., Yuan, Y.R., Li, G.: Finite element methods for contamination by nuclear waste-disposal in porous media. In Numerical Analysis, 1987, D. F. Griffiths and G. A. Watson, eds. Pitman Research Notes in Math. 1970, Longman Scientific and Technical, Fssex, UK, pp. 53–66 (1988)

  19. Ewing, R.E., Yuan, Y. R., Li, G.: A time-discretization procedure for a mixed finite element approximation of contamination by incompressible nuclear waste in porous media. Mathematics of Large Scale Computing, 127–146, Marcel Dekker, INC, New York and Basel (1988)

  20. Ewing, R.E., Yuan, Y.R., Li, G.: Time stepping along characteristics for a mixed finite element approximation for compressible flow of contamination from nuclear waste in porous media. SIAM J. Numer. Anal. 6, 1513–1524 (1989)

    Article  MATH  Google Scholar 

  21. Jiang, L.S., Pang, Z.Y.: Finite Element Method and Its Theory. Peoples Education Press, Beijing (1979)

    Google Scholar 

  22. Johnson, C.: Streamline Diffusion Methods for Problems in Fluid Mechanics, in Finite Element in Fluids VI. Wiley, New York (1986)

    Google Scholar 

  23. Jones, J.E.: A mixed volume method for accurate computation of fluid velocities in porous media. Ph. D. Thesis. University of Clorado, Denver, Co. (1995)

  24. Li, R.H., Chen, Z.Y.: Generalized Difference of Differential Equations. Jilin University Press, Changchun (1994)

    Google Scholar 

  25. Nitsche, J.: Linear splint-funktionen and die methoden von Ritz for elliptishce randwert probleme. Arch. Ration. Mech. Anal. 36, 348–355 (1968)

    Google Scholar 

  26. Pan, H., Rui, H.X.: Mixed element method for two-dimensional Darcy–Forchheimer model. J. Sci. Comput. 52(3), 563–587 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Raviart, P.A., Thomas, J.M.: A mixed finite element method for second order elliptic problems. In Mathematical Aspects of the Finite Element Method. Lecture Notes in Mathematics, 606, Springer (1977)

  28. Reeves, M., Cranwall, R.M.: User’s manual for the Sanda waste-isolation flow and transport model (swift) release 4, 81. Sandia report Nareg/CR-2324, SAND 81-2516, GF. November (1981)

  29. Rui, H.X., Pan, H.: A block-centered finite difference method for the Darcy–Forchheimer model. SIAM J. Numer. Anal. 50(5), 2612–2631 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Russell, T.F.: Time stepping along characteristics with incomplete interaction for a Galerkin approximation of miscible displacement in porous media. SLAM J. Numer. Anal. 22(5), 970–1013 (1985)

    Article  MATH  Google Scholar 

  31. Russell, T.F.: Rigorous block-centered discretizations on irregular grids: improved simulation of complex reservoir systems. Project report, Research Corporation, Tulsa, (1995)

  32. Sun, T.J., Yuan, Y.R.: An approximation of incompressible miscible displacement in porous media by mixed finite element method and characteristics-mixed finite element method. J. Comput. Appl. Math. 228(1), 391–411 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Todd, M.R., O’Dell, P.M., Hirasaki, G.J.: Methods for increased accuracy in numerical reservoir simulators. Soc. Petrol. Eng. J. 12(6), 521–530 (1972)

    Article  Google Scholar 

  34. Weiser, A., Wheeler, M.F.: On convergence of block-centered finite difference for elliptic problems. SIAM J. Numer. Anal. 25(2), 351–375 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yang, D.P.: Analysis of least-squares mixed finite element methods for nonlinear nonstationary convection–diffusion problems. Math. Comput. 69(231), 929–963 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yuan, Y.R.: Numerical simulation and analysis for a model for compressible flow for nuclear waste-disposal contamination in porous media. Acta Math. Appl. Sin. 1, 70–82 (1992)

    MathSciNet  MATH  Google Scholar 

  37. Yuan, Y.R.: Characteristic finite difference methods for positive semidefinite problem of two phase miscible flow in porous media. J. Syst. Sci. Math. Sci. 12(4), 299–306 (1999)

    MathSciNet  MATH  Google Scholar 

  38. Yuan, Y.R.: Characteristic finite element methods for positive semidefinite problem of two phase miscible flow in three dimensions. Chin. Sci. Bull. 41(22), 2027–2032 (1996)

    Google Scholar 

  39. Yuan, Y.R.: Theory and application of reservoir numerical simulation, p. 6. Science Press, Beijing (2013)

    Google Scholar 

  40. Yuan, Y.R.: Fractional Step Finite Difference Method for Multi-dimensional Mathematical–Physical Problems. Science Press, Beijing (2015)

    Google Scholar 

Download references

Acknowledgements

The authors express their deep appreciation to Prof. J. Douglas Jr., Prof. R. E. Ewing, and Prof. Jiang Lishang for their many helpful suggestions in the serial research of numerical simulation of environmental sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yirang Yuan.

Additional information

Project supported by the National Natural Science Foundation of China (Grant Nos. 11101124 and 11271231), National Tackling Key Problems Program (Grant Nos. 2011ZX05052, 2011ZX05011-004).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Yuan, Y., Sun, T. et al. Mixed Volume Element-Characteristic Fractional Step Difference Method for Contamination from Nuclear Waste Disposal. J Sci Comput 72, 467–499 (2017). https://doi.org/10.1007/s10915-017-0365-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0365-3

Keywords

Mathematics Subject Classification

Navigation