Skip to main content
Log in

An Entropy Satisfying Discontinuous Galerkin Method for Nonlinear Fokker–Planck Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose a high order discontinuous Galerkin method for solving nonlinear Fokker–Planck equations with a gradient flow structure. For some of these models it is known that the transient solutions converge to steady-states when time tends to infinity. The scheme is shown to satisfy a discrete version of the entropy dissipation law and preserve steady-states, therefore providing numerical solutions with satisfying long-time behavior. The positivity of numerical solutions is enforced through a reconstruction algorithm, based on positive cell averages. For the model with trivial potential, a parameter range sufficient for positivity preservation is rigorously established. For other cases, cell averages can be made positive at each time step by tuning the numerical flux parameters. A selected set of numerical examples is presented to confirm both the high-order accuracy and the efficiency to capture the large-time asymptotic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Abdallah, N.B., Gamba, I.M., Toscani, G.: On the minimization problem of sub-linear convex functionals. Kinet. Relat. Models 4(4), 857–871 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, A., Unterreiter, A.: Entropy decay of discretized Fokker–Planck equations I—temporal semidiscretization. Comput. Math. Appl. 46(10–11), 1683–1690 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barenblatt, G.I.: On some unsteady fluid and gas motions in a porous medium. J. Appl. Math. Mech. 16(1), 67–78 (1952)

  4. Burger, M., Carrillo, J.A., Wolfram, M.-T.: A mixed finite element method for nonlinear diffusion equations. Kinet. Relat. Models 3, 59–83 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bessemoulin-Chatard, M., Filbet, F.: A finite volume scheme for nonlinear degenerate parabolic equations. SIAM J. Sci. Comput. 34(5), B559–B583 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carrillo, J., Chertock, A., Huang, Y.H.: A finite-volume method for nonlinear nonlocal equations with a gradient flow structure. Commun. Comput. Phys. 17, 233–258 (2015)

    Article  MathSciNet  Google Scholar 

  7. Carrillo, J.A., Jüngel, A., Markowich, P.A., Toscani, G., Unterreiter, A.: Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities. Monatsh. Math. 133(1), 1–82 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carrillo, J.A., Laurençot, P., Rosado, J.: Fermi–Dirac–Fokker–Planck equation: well-posedness & long-time asymptotics. J. Differ. Equ. 247(8), 2209–2234 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carrillo, J.A., McCann, R.J., Villani, C.: Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. Rev. Mat. Iberoam. 19, 971–1018 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Carrillo, J.A., Rosado, J., Salvarani, F.: 1D nonlinear Fokker–Planck equations for fermions and bosons. Appl. Math. Lett. 21(2), 148–154 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Carrillo, J.A., Toscani, G.: Asymptotic \(L^1\)-decay of solutions of the porous medium equation to self-similarity. Indiana Univ. Math. J. 49(1), 113–142 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, New York (2007)

    MATH  Google Scholar 

  13. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, B.Q.: Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer. Computational Fluid and Solid Mechanics. Springer, London (2006)

    Google Scholar 

  15. Liu, H.: Optimal error estimates of the direct discontinuous Galerkin method for convection-diffusion equations. Math. Comput. 84, 2263–2295 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, X., Osher, S.: Nonoscillatory high order accurate self-similar maximum principle satisfying shock capturing schemes I. SIAM J. Number. Anal. 33(2), 760–779 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, H., Pollack, M.: Alternating evolution discontinuous Galerkin methods for convection-diffusion equations. J. Comput. Phys. 307, 574–592 (2016)

  18. Liu, H., Wang, Z.: A free energy satisfying finite difference method for Poisson–Nernst–Planck equations. J. Comput. Phys. 268, 363–376 (2014)

    Article  MathSciNet  Google Scholar 

  19. Liu, H., Yan, J.: The direct discontinuous Galerkin (DDG) methods for diffusion problems. SIAM J. Numer. Anal. 47, 675–698 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, H., Yan, J.: The direct discontinuous Galerkin (DDG) method for diffusion with interface corrections. Commun. Comput. Phys. 8(3), 541–564 (2010)

    MathSciNet  Google Scholar 

  21. Liu, H., Yu, H.: An entropy satisfying conservative method for the Fokker–Planck equation of the finitely extensible nonlinear elastic dumbbell model. SIAM J. Numer. Anal. 50, 1207–1239 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, H., Yu, H.: The entropy satisfying dicontinuous Galerkin method for Fokker–Planck equations. J. Sci. Comput. 62, 803–830 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, H., Yu, H.: Maximum-principle-satisfying third order discontinuous Galerkin schemes for Fokker–Planck equations. SIAM J. Sci. Comput. 36(5), A2296–A2325 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differ. Equ. 26(1–2), 101–174 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pattle, R.E.: Diffusion from an instantaneous point source with a concentration-dependent coefficient. Q. J. Mech. Appl. Math. 12, 407–409 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM, Philadelphia (2008)

    Book  MATH  Google Scholar 

  27. Shu, C.-W.: Discontinuous Galerkin methods: general approach and stability, in numerical solutions of partial differential equations. In: Bertoluzza, S., Falletta, S., Russo, G., Shu, C.-W. (eds.) Advanced Courses in Mathematics, CRM Barcelona, p. 149201. Birkhaüser, Basel (2009)

    Google Scholar 

  28. Toscani, G.: Finite time blow up in Kaniadakis–Quarati model of Bose–Einstein particles. Comm. Partial Differ. Equ. 37(1), 77–87 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Warburton, T., Hesthaven, J.S.: On the constants in hp-finite element trace inequalities. Comput. Methods Appl. Mech. Eng. 192, 2765–2773 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang, X.-X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229(9), 3091–3120 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Liu was supported by the National Science Foundation under Grant DMS1312636 and by NSF Grant RNMS (Ki-Net) 1107291.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailiang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Wang, Z. An Entropy Satisfying Discontinuous Galerkin Method for Nonlinear Fokker–Planck Equations. J Sci Comput 68, 1217–1240 (2016). https://doi.org/10.1007/s10915-016-0174-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0174-0

Keywords

Mathematics Subject Classification

Navigation