Skip to main content
Log in

Efficient High Order Semi-implicit Time Discretization and Local Discontinuous Galerkin Methods for Highly Nonlinear PDEs

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we develop a high order semi-implicit time discretization method for highly nonlinear PDEs, which consist of the surface diffusion and Willmore flow of graphs, the Cahn–Hilliard equation and the Allen–Cahn/Cahn–Hilliard system. These PDEs are high order in spatial derivatives, which motivates us to develop implicit or semi-implicit time marching methods to relax the severe time step restriction for stability of explicit methods. In addition, these PDEs are also highly nonlinear, fully implicit methods will incredibly increase the difficulty of implementation. In particular, we can not well separate the stiff and non-stiff components for these problems, which leads to traditional implicit-explicit methods nearly meaningless. In this paper, a high order semi-implicit time marching method and the local discontinuous Galerkin (LDG) spatial method are coupled together to achieve high order accuracy in both space and time, and to enhance the efficiency of the proposed approaches, the resulting linear or nonlinear algebraic systems are solved by multigrid solver. Specially, we develop a first order fully discrete LDG scheme for the Allen–Cahn/Cahn–Hilliard system and prove the unconditional energy stability. Numerical simulation results in one and two dimensions are presented to illustrate that the combination of the LDG method for spatial approximation, semi-implicit temporal integration with the multigrid solver provides a practical and efficient approach when solving this family of problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131, 267–279 (1997)

  2. Boscarino, S., Filbet, F., Russo, G.: High order semi-implicit schemes for time dependent partial differential equations. J. Sci. Comput. 66, 1–27 (2016). doi:10.1007/s10915-016-0168-y

  3. Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  4. Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cockburn, B., Hou, S., Shu, C.-W.: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comput. 54, 545–581 (1990)

    MathSciNet  MATH  Google Scholar 

  6. Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deckelnick, K., Dziuk, G.: Error analysis of a finite element method for the Willmore flow of graphs. Interfaces Free Bound. 8, 21–46 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary differential equations. BIT 40, 241–266 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eyre, D.J.: Unconditionally gradient stable time marching the Cahn–Hilliard equation. In: Bullard, J.W., Kalia, R., Stoneham, M., Chen, L.Q. (eds.) Computational and Mathematical Models of Microstructural Evolution, vol. 53, pp. 1685–1712. Materials Research Society, Warrendale (1998)

    Google Scholar 

  11. Filbet, F., Jin, S.: An asymptotic preserving scheme for the ES-BGK model of the Boltzmann equation. J. Sci. Comput. 46(2), 204–224 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Filbet, F., Jin, S.: A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources. J. Comput. Phys. 229(20), 7625–7648 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Guo, R., Xu, Y.: Efficient solvers of discontinuous Galerkin discretization for the Cahn–Hilliard equations. J. Sci. Comput. 58, 380–408 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Minion, M.L.: Semi-implicit spectral deferred correction methods for ordinary differential equations. Math. Sci. 1, 471–500 (2003)

    MathSciNet  MATH  Google Scholar 

  15. Pareschi, L., Russo, G.: Implicit-Explicit Runge–Kutta Schemes for Stiff Systems of Differential Equations. Recent trends in numerical analysis, pp. 269–288, Adv. Theory Comput. Math. 3, Nova Sci. Publ. Huntington (2001)

  16. Reed, W.H., Hill, T.R.: Triangular Mesh Method for the Neutron Transport Equation, Technical Report LA-UR-73-479. Los Alamos Scientific Laboratory, Los Alamos (1973)

    Google Scholar 

  17. Smereka, P.: Semi-implicit level set methods for curvature and surface diffusion motion. J. Sci. Comput. 19, 439–456 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Academic Press, New York (2005)

    MATH  Google Scholar 

  19. Xia, Y., Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for the Cahn–Hilliard type equations. J. Comput. Phys. 227, 677–693 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Xia, Y., Xu, Y., Shu, C.-W.: Efficient time discretization for local discontinuous Galerkin methods. Discrete Contin. Dyn. Syst. Ser. B 8, 677–693 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Xia, Y., Xu, Y., Shu, C.-W.: Application of the local discontinuous Galerkin method for the Allen–Cahn/Cahn–Hilliard system. Commun. Comput. Phys. 5, 821–835 (2009)

    MathSciNet  Google Scholar 

  22. Xia, Y.: A fully discrete stable discontinuous Galerkin method for the thin film epitaxy problem without slope selection. J. Comput. Phys. 280, 248–260 (2015)

    Article  MathSciNet  Google Scholar 

  23. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin method for surface diffusion and Willmore flow of graphs. J. Sci. Comput. 40, 375–390 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for high-order time-dependent partial differential equations. Commun. Comput. Phys. 7, 1–46 (2010)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis Filbet.

Additional information

Research supported by NSFC Grant No. 11371342, 11426236.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, R., Filbet, F. & Xu, Y. Efficient High Order Semi-implicit Time Discretization and Local Discontinuous Galerkin Methods for Highly Nonlinear PDEs. J Sci Comput 68, 1029–1054 (2016). https://doi.org/10.1007/s10915-016-0170-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0170-4

Keywords

Navigation