Skip to main content
Log in

To CG or to HDG: A Comparative Study in 3D

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Since the inception of discontinuous Galerkin (DG) methods for elliptic problems, there has existed a question of whether DG methods can be made more computationally efficient than continuous Galerkin (CG) methods. Fewer degrees of freedom, approximation properties for elliptic problems together with the number of optimization techniques, such as static condensation, available within CG framework made it challenging for DG methods to be competitive until recently. However, with the introduction of a static-condensation-amenable DG method—the hybridizable discontinuous Galerkin (HDG) method—it has become possible to perform a realistic comparison of CG and HDG methods when applied to elliptic problems. In this work, we extend upon an earlier 2D comparative study, providing numerical results and discussion of the CG and HDG method performance in three dimensions. The comparison categories covered include steady-state elliptic and time-dependent parabolic problems, various element types and serial and parallel performance. The postprocessing technique, which allows for superconvergence in the HDG case, is also discussed. Depending on the direct linear system solver used and the type of the problem (steady-state vs. time-dependent) in question the HDG method either outperforms or demonstrates a comparable performance when compared with the CG method. The HDG method however falls behind performance-wise when the iterative solver is used, which indicates the need for an effective preconditioning strategy for the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Amestoy, P.R., Duff, I.S., Koster, J., L’Excellent, J.-Y.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cantwell, C.D., Moxey, D., Comerford, A., Bolis, A., Rocco, G., Mengaldo, G., de Grazia, D., Yakovlev, S., Lombard, J.-E., Ekelschot, D., Xu, H., Mohamied, Y., Eskilsson, C., Nelson, B., Vos, P., Biotto, C., Kirby, R.M., Sherwin, S.J.: Nektar++: an open-source spectral/hp element framework. Comput. Phys. Commun. 192, 205–219 (2015)

    Article  Google Scholar 

  4. Celiker, F., Cockburn, B., Shi, K.: Hybridizable discontinuous Galerkin methods for Timoshenko beams. J. Sci. Comput. 44(1), 1–37 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Celiker, F., Cockburn, B., Shi, K.: A projection-based error analysis of HDG methods for Timoshenko beams. Math. Comput. 81, 277 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cesmelioglu, A., Cockburn, B., Nguyen, N.C., Peraire, J.: Analysis of HDG methods for Oseen equations. J. Sci. Comput. 55(2), 392–431 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, Y., Cockburn, B.: Analysis of variable-degree HDG methods for convection-diffusion equations. Part I: general nonconforming meshes. IMA J. Numer. Anal. 32(4), 1267–1293 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chevalier, C., Pellegrini, F.: PT-scotch: a tool for efficient parallel graph ordering. Parallel Comput. 34(6), 318–331 (2008)

    Article  MathSciNet  Google Scholar 

  9. Cockburn, B., Dong, B., Guzmán, J.: A superconvergent LDG-Hybridizable Galerkin method for second-order elliptic problems. Math. Comput. 77(264), 1887–1916 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cockburn, B., Guzmán, J., Wang, H.: Superconvergent discontinuous Galerkin methods for second-order elliptic problems. Math. Comput. 78, 1–24 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cockburn, B., Cui, J.: Divergence-free HDG methods for the vorticity-velocity formulation of the stokes problem. J. Sci. Comput. 52(1), 256–270 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cockburn, B., Dong, B., Guzmán, J., Restelli, M., Sacco, Riccardo: A hybridizable discontinuous Galerkin method for steady-state convection-diffusion-reaction problems. SIAM J. Sci. Comput. 31(5), 3827–3846 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cockburn, B., Dubois, O., Gopalakrishnan, J., Tan, S.: Multigrid for an HDG method. IMA J. Numer. Anal. 34(4), 1386–1425 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cockburn, B., Gopalakrishnan, J., Sayas, F.-J.: A projection-based error analysis of HDG methods. Math. Comput. 79(271), 1351–1367 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cockburn, B., Nguyen, N.C., Peraire, J.: A comparison of HDG methods for Stokes flow. J. Sci. Comput. 45(1–3), 215–237 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cockburn, B., Qiu, W., Shi, K.: Conditions for superconvergence of HDG methods for second-order elliptic problems. Math. Comput. 81, 279 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Cockburn, B., Shi, K.: Conditions for superconvergence of HDG methods for Stokes flow. Math. Comput. 82, 282 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Demmel, J.W., Heath, M.T., Van Der Vorst, H.A.: Parallel numerical linear algebra. Acta Numer. 2, 111–197 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dubiner, M.: Spectral methods on triangles and other domains. J. Sci. Comput. 6, 345–390 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Grinberg, L., Pekurovsky, D., Sherwin, S.J., Karniadakis, G.E.: Parallel performance of the coarse space linear vertex solver and low energy basis preconditioner for spectral/hp elements. Parallel Comput. 35(5), 284–304 (2009)

    Article  MathSciNet  Google Scholar 

  23. Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd edn. Springer, New York (1991)

    Book  MATH  Google Scholar 

  24. Huerta, A., Angeloski, A., Roca, X., Peraire, J.: Efficiency of high-order elements for continuous and discontinuous galerkin methods. Int. J. Numer. Meth. Eng. 96(9), 529–560 (2013)

    Article  MathSciNet  Google Scholar 

  25. Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice-Hall, Englewood Cliffs (1987)

    MATH  Google Scholar 

  26. Jaust, A., Schuetz, J., Woopen, M.: A hybridyzed discontinuous galerkin method for unsteady flows with Shock-Capturing. In: 44th AIAA Fluid Dynamics Conference, AIAA Aviation. American Institute of Aeronautics and Astronautics (2014)

  27. Karniadakis, G.E., Israeli, M., Orszag, S.A.: High-order splitting methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 97(2), 414–443 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  28. Karniadakis, G.E., Sherwin, S.J.: Spectral/hp Element Methods for CFD, 2nd edn. OXFORD University Press, Oxford (2005)

    Book  MATH  Google Scholar 

  29. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kirby, R.M., Sherwin, S.J., Cockburn, B.: To CG or to HDG: a comparative study. J. Sci. Comput. 51(1), 183–212 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lange, M., Gorman, G., Weiland, M., Mitchell, L., Southern, J.: Achieving efficient strong scaling with PETSc using hybrid MPI/OpenMP optimisation. In: Supercomputing, pp. 97–108. Springer, New York (2013)

  32. Lanteri, S., Perrussel, R.: An implicit hybridized discontinuous Galerkin method for time-domain Maxwell’s equations. Rapport de recherche RR-7578, INRIA, (March 2011)

  33. Li, L., Lanteri, S., Perrussel, R.: A hybridizable discontinuous Galerkin method for solving 3D time-harmonic Maxwells equations. In: Cangiani, A., Davidchack, R.L., Georgoulis, E., Gorban, A.N., Levesley, Jeremy, Tretyakov, Michael V. (eds.) Numerical Mathematics and Advanced Applications 2011, pp. 119–128. Springer, Berlin (2013)

    Chapter  Google Scholar 

  34. Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for linear convection diffusion equations. J. Comput. Phys. 228(9), 3232–3254 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection diffusion equations. J. Comput. Phys. 228(23), 8841–8855 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Nguyen, N.C., Peraire, J., Cockburn, B.: Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell’s equations. J. Comput. Phys. 230(19), 7151–7175 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier–Stokes equations. J. Comput. Phys. 230(4), 1147–1170 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Persson, P.-O., Peraire, J.: Newton-GMRES preconditioning for discontinuous Galerkin discretizations of the Navier–Stokes equations. SIAM J. Sci. Comput. 30(6), 2709–2733 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Rhebergen, S., Cockburn, B.: A space-time hybridizable discontinuous Galerkin method for incompressible flows on deforming domains. J. Comput. Phys. 231(11), 4185–4204 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Rhebergen, S., Cockburn, B., van der Vegt, J.J.W.: A space-time discontinuous Galerkin method for the incompressible Navier–Stokes equations. J. Comput. Phys. 233, 339–358 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Roca, X., Nguyen, N.C., Peraire, J.: Scalable parallelization of the hybridized discontinuous galerkin method for compressible flow. In: 21st AIAA Computational Fluid Dynamics Conference (2013)

  42. Sherwin, S.J.: Hierarchical hp finite elements in hybrid domains. Finite Elment Anal. Design 27, 109 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sherwin, S.J., Karniadakis, G.E.: A new triangular and tetrahedral basis for high-order (hp) finite element methods. Int. J. Numer. Meth. Eng. 38(22), 3775–3802 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sherwin, S.J., Casarin, M.: Low-energy basis preconditioning for elliptic substructured solvers based on unstructured spectral/hp element discretization. J. Comput. Phys. 171(1), 394–417 (2001)

    Article  MATH  Google Scholar 

  45. Soon, S.-C., Cockburn, B., Stolarski, H.K.: A hybridizable discontinuous Galerkin method for linear elasticity. Int. J. Numer. Meth. Eng. 80(8), 1058–1092 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. Tufo, H.M., Fischer, P.F.: Fast parallel direct solvers for coarse grid problems. J. Parallel Distrib. Comput. 61(2), 151–177 (2001)

    Article  MATH  Google Scholar 

  47. Vos, P.: From h to p efficiently: optimising the implementation of spectral/\(hp\) element methods. PhD thesis, Imperial College London (2011)

  48. Vos, P.E.J., Sherwin, S.J., Kirby, R.M.: From h to p efficiently: implementing finite and spectral/hp element methods to achieve optimal performance for low- and high-order discretisations. J. Comput. Phys. 229(13), 5161–5181 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Woopen, M., Ludescher, T., May, G.: A hybridyzed discontinuous Galerkin method for turbulent compressible flow. In: 44th AIAA Fluid Dynamics Conference, AIAA Aviation. American Institute of Aeronautics and Astronautics (2014)

  50. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method: Fluid Mechanics, vol. 3, 5th edn. Butterworth-Heinemann, Oxford (2000)

    MATH  Google Scholar 

  51. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method: Solid Mechanics, vol. 2, 5th edn. Butterworth-Heinemann, Oxford (2000)

    MATH  Google Scholar 

  52. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method: The Basis, vol. 1, 5th edn. Butterworth-Heinemann, Oxford (2000)

    MATH  Google Scholar 

Download references

Acknowledgments

The work was supported by the Department of Energy (DOE NETL DE-EE004449) and under NSF OCI-1148291. DM acknowledges support from the EU FP7 project IDIHOM under Grant No. 265780. SJS additionally acknowledges Royal Academy of Engineering support under their research chair scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Yakovlev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovlev, S., Moxey, D., Kirby, R.M. et al. To CG or to HDG: A Comparative Study in 3D. J Sci Comput 67, 192–220 (2016). https://doi.org/10.1007/s10915-015-0076-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0076-6

Keywords

Navigation