Skip to main content
Log in

A Comparison of Artificial Viscosity, Limiters, and Filters, for High Order Discontinuous Galerkin Solutions in Nonlinear Settings

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Nonlinear systems of equations demonstrate complicated regularity features that are often obfuscated by overly diffuse numerical methods. Using a discontinuous Galerkin finite element method, we study a nonlinear system of advection–diffusion–reaction equations and aspects of its regularity. For numerical regularization, we present a family of solutions consisting of: (1) a sharp, computationally efficient slope limiter, known as the BDS limiter, (2) a standard spectral filter, and (3) a novel artificial diffusion algorithm with a solution-dependent entropy sensor. We analyze these three numerical regularization methods on a classical test in order to test the strengths and weaknesses of each, and then benchmark the methods against a large application model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abgrall, R.: On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation. J. Comput. Phys. 114(1), 45–58 (1994). doi:10.1006/jcph.1994.1148

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2001/02). ISSN 0036–1429. doi:10.1137/S0036142901384162

  3. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, D.: Discontinuous Galerkin methods for elliptic problems. In: Discontinuous Galerkin methods (Newport, RI, 1999). Lecture Notes in Computer Science Engineering, vol. 11, pp. 89–101. Springer, Berlin (2000)

  4. Barter, G.E., Darmofal, D.L.: Shock capturing with PDE-based artificial viscosity for DGFEM: part I. Formulation. J. Comput. Phys. 229(5), 1810–1827 (2010). doi:10.1016/j.jcp.2009.11.010

    Article  MathSciNet  MATH  Google Scholar 

  5. Barth, T., Jesperson, D.C.: The design and application of upwind schems and unstructured meshes. AIAA, paper 89–0366 (1989)

  6. Bell, J.B., Dawson, C.N., Shubin, G.R.: An unsplit, higher order godunov method for scalar conservation laws in multiple dimensions. J. Comput. Phys. 74(1), 1–24 (1988). ISSN 0021–9991. doi:10.1016/0021-9991(88)90065-4. http://www.sciencedirect.com/science/article/B6WHY-4DD1T8P-N0/2/aba1bf519b0924a0a20968665aa37091

  7. Bunya, S., Kubatko, E.J., Westerink, J.J., Dawson, C.: A wetting and drying treatment for the Runge–Kutta discontinuous Galerkin solution to the shallow water equations. Comput. Methods Appl. Mech. Eng. 198(17–20), 1548–1562 (2009). doi:10.1016/j.cma.2009.01.008

    Article  MathSciNet  MATH  Google Scholar 

  8. Bunya, S., Dietrich, J.C., Westerink, J.J., Ebersole, B.A., Smith, J.M., Atkinson, J.H., Jensen, R., Resio, D.T., Luettich, R.A., Dawson, C., Cardone, V.J., Cox, A.T., Powell, M.D., Westerink, H.J., Roberts, H.J.: A high-resolution coupled riverine flow, tide, wind, wind wave, and storm surge model for southern Louisiana and Mississippi. Part I: Model Development and Validation. Mon. Weather Rev. 138(2), 345–377 (2010). doi:10.1175/2009MWR2906.1

    Article  Google Scholar 

  9. Casoni, E., Peraire, J., Huerta, A.: One-dimensional shock-capturing for high-order discontinuous Galerkin methods. Int. J. Numer. Methods Fluids 71(6), 737–755 (2013). doi:10.1002/fld.3682

    Article  MathSciNet  Google Scholar 

  10. Cockburn, B.: An introduction to the discontinuous Galerkin method for convection-dominated problems. In: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations (Cetraro, 1997). Lecture Notes in Mathematics, vol. 1697, pp. 151–268. Springer, Berlin (1998)

  11. Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comp. 52(186), 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  12. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cockburn, B., Shu, C.-W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cockburn, B., Shu, C.W.: The runge-kutta discontinuous galerkin method for conservation laws v: multidimensional systems. J. Comput. Phys. 141(2), 199–224(1998). ISSN 0021–9991. doi:10.1006/jcph.1998.5892. http://www.sciencedirect.com/science/article/B6WHY-45J593T6N/2/34d62c09260f2d7d0af3099d456a3b72

  15. Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dawson, C., Kubatko, E.J., Westerink, J.J., Trahan, C., Mirabito, C., Michoski, C., Panda, N.: Discontinuous Galerkin methods for modeling hurricane storm surge. Adv. Water Resour. 34(9), 1165–1176 (2011). ISSN 0309–1708. doi:10.1016/j.advwatres.2010.11.004. http://www.sciencedirect.com/science/article/pii/S0309170810002137. New Computational Methods and Software Tools

  17. Dawson, C., Westerink, J.J., Feyen, J.C., Pothina, D.: Continuous, discontinuous and coupled discontinuous–continuous Galerkin finite element methods for the shallow water equations. Int. J. Numer. Methods Fluids 52(1), 63–88 (2006). doi:10.1002/fjd.1156

    Article  MathSciNet  MATH  Google Scholar 

  18. DuChene, M., Spagnuolo, A.M., Kubatko, E., Westerink, J., Dawson, C.: A framework for running the ADCIRC discontinuous Galerkin storm surge model on a GPU. Procedia Comput. Sci. 4, 2017–2026 (2011). doi:10.1016/j.procs.2011.04.220. http://www.sciencedirect.com/science/article/pii/S187705091100278X

  19. Durlofsky, L.J., Engquist, B., Osher, S.: Triangle based adaptive stencils for the solution of hyperbolic conservation laws. J. Comput. Phys. 98(1), 64–73 (1992). ISSN 0021–9991. doi:10.1016/0021-9991(92)90173-V. http://www.sciencedirect.com/science/article/B6WHY-4DD1P88-NW/2/14f5775efbf9049e31e12411e2e34238

  20. Feistauer, M., Felcman, J., Straškraba, I.: Mathematical and Computational Methods for Compressible Flow. Numerical Mathematics and Scientific Computation. Oxford University Press (2003). ISBN 0-19-850588-4

  21. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods. In: Texts in Applied Mathematics, vol. 54. Springer, New York, (2008). ISBN 978-0-387-72065-4. doi:10.1007/978-0-387-72067-8. Algorithms, analysis, and applications

  22. Hindenlang, F., Gassner, G.J., Altmann, C., Beck, A., Staudenmaier, M., Munz, C.-D.: Explicit discontinuous Galerkin methods for unsteady problems. Comput. Fluids 61(SI), 86–93 (2012). doi:10.1016/j.compfluid.2012.03.006

    Article  MathSciNet  Google Scholar 

  23. Ketcheson, D., Parsani, M., LeVeque, R.: High-order wave propagation algorithms for hyperbolic systems. SIAM J. Sci. Comput. 35(1), A351–A377 (2013). doi:10.1137/110830320

    Article  MathSciNet  MATH  Google Scholar 

  24. Kloeckner, A., Warburton, T., Bridge, J., Hesthaven, J.S.: Nodal discontinuous Galerkin methods on graphics processors. J. Comput. Phys. 228(21), 7863–7882 (2009). doi:10.1016/j.jcp.2009.06.041

    Article  MathSciNet  MATH  Google Scholar 

  25. Kloeckner, A., Warburton, T., Hesthaven, J.S.: Viscous shock capturing in a time-explicit discontinuous Galerkin method. Math. Model. Nat. Phenom. 6(3), 57–83 (2011). doi:10.1051/mmnp/20116303

    Article  MathSciNet  MATH  Google Scholar 

  26. Kubatko, E.J., Westerink, J.J., Dawson, C.: hp discontinuous galerkin methods for advection dominated problems in shallow water flow. Comput. Methods Appl. Mech. Eng. 196(1–3), 437–451 (2006). ISSN 0045–7825. doi:10.1016/j.cma.2006.05.002. http://www.sciencedirect.com/science/article/B6V29-4M1CYTM-1/2/6c45c85d20d17690046881a795b0b04d

  27. Kubatko, E.J., Westerink, J.J., Dawson, C.: Semi discrete discontinuous Galerkin methods and stage-exceeding-order, strong-stability-preserving Runge–Kutta time discretizations. J. Comput. Phys. 222(2), 832–848 (2007a). doi:10.1016/j.jcp.2006.08.005

    Article  MathSciNet  MATH  Google Scholar 

  28. Kubatko, E.J., Dawson, C., Westerink, J.J.: Time step restrictions for Runge–Kutta discontinuous Galerkin methods on triangular grids. J. Comput. Phys. 227(23), 9697–9710 (2008). doi:10.1016/j.jcp.2008.07.026

    Article  MathSciNet  MATH  Google Scholar 

  29. Kubatko, E.J., Bunya, S., Dawson, C., Westerink, J.J., Mirabito, C.: A performance comparison of continuous and discontinuous finite element shallow water models. J. Sci. Comput. 40(1–3), 315–339 (2009). doi:10.1007/s10915-009-9268-2

    Article  MathSciNet  MATH  Google Scholar 

  30. Kubatko, Ethan J., Westerink, Joannes J., Dawson, Clint: Semi discrete discontinuous Galerkin methods and stage-exceeding-order, strong-stability-preserving Runge–Kutta time discretizations. J. Comput. Phys. 222(2), 832–848 (2007b). doi:10.1016/j.jcp.2006.08.005

    Article  MathSciNet  MATH  Google Scholar 

  31. Kubatko, Ethan J., Westerink, Joannes J., Dawson, Clint: hp discontinuous Galerkin methods for advection dominated problems in shallow water flow. Comput. Methods Appl. Mech. Eng. 196(1–3), 437–451 (2006). doi:10.1016/j.cma.2006.05.002

    Article  MATH  Google Scholar 

  32. Kuzmin, D.: A vertex-based hierarchical slope limiter for p-adaptive discontinuous Galerkin methods. J. Comput. Appl. Math. 233(12), 3077–3085 (2010). doi:10.1016/j.cam.2009.05.028

    Article  MathSciNet  MATH  Google Scholar 

  33. Kuzmin, D.: Slope limiting for discontinuous Galerkin approximations with a possibly non-orthogonal Taylor basis. Int. J. Numer. Methods Fluids 71(9), 1178–1190 (2013). doi:10.1002/fld.3707

    Article  MathSciNet  Google Scholar 

  34. Kuzmin, D., Schieweck, F.: A parameter-free smoothness indicator for high-resolution finite element schemes. Central Eur. J. Math. 11(8), 1478–1488 (2013). doi:10.2478/s11533-013-0254-4

    MathSciNet  MATH  Google Scholar 

  35. Liu, Y., Shu, C.-W., Tadmor, E., Zhang, M.: Central discontinuous Galerkin methods on overlapping cells with a nonoscillatory hierarchical reconstruction. SIAM J. Numer. Anal. 45(6), 2442–2467 (2007). doi:10.1137/060666974. (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  36. Maday, Y., Kaber, S., Tadmor, E.: Legendre pseudospectral viscosity method for nonlinear conservation-laws. SIAM J. Numer. Anal. 30(2), 321–342 (1993). doi:10.1137/0730016

    Article  MathSciNet  MATH  Google Scholar 

  37. Meister, A., Ortleb, S., Sonar, Th: Application of spectral filtering to discontinuous Galerkin methods on triangulations. Numer. Methods Partial Differ. Equ. 28(6), 1840–1868 (2012). doi:10.1002/num.20705

    Article  MathSciNet  MATH  Google Scholar 

  38. Michoski, C., Evans, J.A., Schmitz, P.G., Vasseur, A.: A discontinuous Galerkin method for viscous compressible multifluids. J. Comput. Phys. 229(6), 2249–2266 (2010). doi:10.1016/j.jcp.2009.11.033

    Article  MathSciNet  MATH  Google Scholar 

  39. Michoski, C., Mirabito, C., Dawson, C., Wirasaet, D., Kubatko, E.J., Westerink, J.J.: Adaptive hierarchic transformations for dynamically \(p\)-enriched slope-limiting over discontinuous Galerkin systems of generalized equations. J. Comput. Phys. 230(22), 8028–8056 (2011). doi:10.1016/j.jcp.2011.07.009

    Article  MathSciNet  MATH  Google Scholar 

  40. Michoski, C., Mirabito, C., Dawson, C., Wirasaet, D., Kubatko, E.J., Westerink, J.J.: Dynamic p-enrichment schemes for multicomponent reactive flows. Adv. Water Resour. 34(12), 1666–1680 (2011). ISSN 0309–1708. doi:10.1016/j.advwatres.2011.09.001. http://www.sciencedirect.com/science/article/pii/S0309170811001679

  41. Michoski, C., Evans, J.A., Schmitz, P.G.: Discontinuous Galerkin hp-adaptive methods for multiscale chemical reactors i: Quiescent reactors. Preprint (2013)

  42. Osher, S.: Convergence of generalized MUSCL schemes. SIAM J. Numer. Anal. 22(5), 947–961 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  43. Persson, P.-O., Peraire, J.: Sub-cell shock capturing for discontinuous Galerkin methods. Preprint (2013)

  44. Ruuth, S.J.: Global optimization of explicit strong-stability-preserving Runge–Kutta methods. Math. Comput. 75(253), 183–207 (2006). doi:10.1090/S0025-5718-05-01772-2. (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  45. Shu, C.-W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  46. Tadmor, Eitan, Waagan, Knut: Adaptive spectral viscosity for hyperbolic conservation laws. SIAM J. Sci. Comput. 34(2), A993–A1009 (2012). doi:10.1137/110836456

    Article  MathSciNet  MATH  Google Scholar 

  47. Thomas, J.W.: Numerical partial differential equations: finite difference methods. In: Texts in Applied Mathematics, vol. 22. Springer, New York (1995). ISBN 0-387-97999-9

  48. Wirasaet, D., Tanaka, S., Kubatko, E.J., Westerink, J.J., Dawson, C.: A performance comparison of nodal discontinuous Galerkin methods on triangles and quadrilaterals. Int. J. Numer. Methods Fluids 64(10–12), 1336–1362 (2010). ISSN 0271–2091. doi:10.1002/fld.2376. 15th International Conference on Finite Elements in Flow Problems, Tokyo, Japan, April 01–03, 2009

  49. Xin, J.G., Flaherty, J.E.: Viscous stabilization of discontinuous Galerkin solutions of hyperbolic conservation laws. Appl. Numer. Math. 56(3–4), 444–458 (2006). ISSN 0168–9274. doi:10.1016/j.apnum.2005.08.001. 3rd International Conference on Numerical Solutions of Volterra and Delay Equations, Tempe, AZ, May, 2004

  50. Xing, Y., Shu, C.W.: High-order finite volume weno schemes for the shallow water equations with dry states. Adv. Water Resour. 34(8), 1026–1038 (2011). ISSN 0309–1708. doi:10.1016/j.advwatres.2011.05.008. http://www.sciencedirect.com/science/article/pii/S0309170811000996

  51. Xing, Y., Zhang, X., Shu, C.-W.: Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations. Adv. Water Resour. 33(12), 1476–1493 (2010). ISSN 0309–1708. doi:10.1016/j.advwatres.2010.08.005. http://www.sciencedirect.com/science/article/pii/S0309170810001491

  52. Zingan, V., Guermond, J.-L., Morel, J., Popov, B.: Implementation of the entropy viscosity method with the discontinuous Galerkin method. Comput. Methods Appl. Mech. Eng. 253, 479–490 (2013). doi:10.1016/j.cma.2012.08.018

    Article  MathSciNet  MATH  Google Scholar 

  53. Zingan, V.N.: Discontinuous Galerkin finite element method for the nonlinear hyperbolic problems with entropy-based artificial viscosity stabilization. Dissertation, Texas A&M University (2012)

Download references

Acknowledgments

The authors would like to thank Kyle Mandli and Stewart Stafford for helpful comments, insights, and conversation, and to acknowledge the support of the National Science Foundation Grant NSF ACI-1339801.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Michoski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michoski, C., Dawson, C., Kubatko, E.J. et al. A Comparison of Artificial Viscosity, Limiters, and Filters, for High Order Discontinuous Galerkin Solutions in Nonlinear Settings. J Sci Comput 66, 406–434 (2016). https://doi.org/10.1007/s10915-015-0027-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0027-2

Keywords

Navigation