Skip to main content
Log in

A Complete Study of the Ground State Phase Diagrams of Spin-1 Bose–Einstein Condensates in a Magnetic Field Via Continuation Methods

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present a complete investigation of the ground state patterns and phase diagrams of the spin-1 Bose–Einstein condensates (BEC) confined in a harmonic or box potential under the influence of a homogeneous magnetic field. A pseudo-arclength continuation method with parameter switching technique is developed to study the BEC systems numerically. The continuation process is performed on the parameter space consisting of the spin–independent interaction, spin–exchange interaction and the quadratic Zeeman (QZ) energy parameters. In the first stage of the parameter switching process, we fix the QZ energy term to be zero and vary the interaction parameters from zero to the desired physical values. Next, we fix the interaction parameters and vary the QZ energy parameter in both positive and negative regions. Two types of phase transitions are found, as we vary the QZ parameter. The first type is a transition from a two-component state to a three-component (3C) state. The second type is a symmetry breaking in the 3C state. Then, a phase separation of the spin components follows. In the semi-classical regime, we find that these two phase transition curves are gradually merged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Stenger, J., Inouye, S., Stamper-Kurn, D., Miesner, H.-J., Chikkatur, A., Ketterle, W.: Spin domains in ground-state Bose–Einstein condensates. Nature 396(6709), 345–348 (1998)

    Article  Google Scholar 

  2. Stamper-Kurn, D., Andrews, M., Chikkatur, A., Inouye, S., Miesner, H.-J., Stenger, J., Ketterle, W.: Optical confinement of a Bose–Einstein condensate. Phys. Rev. Lett. 80(10), 2027 (1998)

    Article  Google Scholar 

  3. Ho, T.-L.: Spinor Bose condensates in optical traps. Phys. Rev. Lett. 81(4), 742 (1998)

    Article  Google Scholar 

  4. Isoshima, T., Machida, K., Ohmi, T.: Spin-domain formation in spinor Bose–Einstein condensation. Phys. Rev. A 60(6), 4857 (1999)

    Article  Google Scholar 

  5. Bloch, I., Dalibard, J., Zwerger, W.: Many-body physics with ultracold gases. Rev. Mod. Phys. 80(3), 885 (2008)

    Article  Google Scholar 

  6. Leanhardt, A., Shin, Y., Kielpinski, D., Pritchard, D., Ketterle, W.: Coreless vortex formation in a spinor Bose–Einstein condensate. Physical Rev. Lett. 90(14), 140403 (2003)

    Article  Google Scholar 

  7. Sadler, L., Higbie, J., Leslie, S., Vengalattore, M., Stamper-Kurn, D.: Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose–Einstein condensate. Nature 443(7109), 312–315 (2006)

    Article  Google Scholar 

  8. Kawaguchi, Y., Saito, H., Ueda, M.: Can spinor dipolar effects be observed in Bose–Einstein condensates? Phys. Rev. Lett. 98(11), 110406 (2007)

    Article  Google Scholar 

  9. Nistazakis, H., Frantzeskakis, D., Kevrekidis, P., Malomed, B., Carretero-González, R., Bishop, A.: Polarized states and domain walls in spinor Bose–Einstein condensates. Phys. Rev. A 76(6), 063603 (2007)

    Article  Google Scholar 

  10. Li, Z.-D., Li, Q.-Y., He, P.-B., Liang, J.-Q., Liu, W., Fu, G.: Domain-wall solutions of spinor Bose–Einstein condensates in an optical lattice. Phys. Rev. A 81(1), 015602 (2010)

    Article  Google Scholar 

  11. Hoshi, S., Saito, H.: Symmetry-breaking magnetization dynamics of spinor dipolar Bose–Einstein condensates. Phys. Rev. A 81(1), 013627 (2010)

    Article  Google Scholar 

  12. Pasquiou, B., Maréchal, E., Bismut, G., Pedri, P., Vernac, L., Gorceix, O., Laburthe-Tolra, B.: Spontaneous demagnetization of a dipolar spinor bose gas in an ultralow magnetic field. Phys. Rev. Lett. 106(25), 255303 (2011)

    Article  Google Scholar 

  13. Chang, M.-S., Qin, Q., Zhang, W., You, L., Chapman, M.S.: Coherent spinor dynamics in a spin-1 Bose condensate. Nat. Phys. 1(2), 111–116 (2005)

    Article  Google Scholar 

  14. Chen, J.-H., Chern, I.-L., Wang, W.: Exploring ground states and excited states of spin-1 Bose–Einstein condensates by continuation methods. J. Comput. Phys. 230(6), 2222–2236 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jacob, D., Shao, L., Corre, V., Zibold, T., De Sarlo, L., Mimoun, E., Dalibard, J., Gerbier, F.: Phase diagram of spin-1 antiferromagnetic Bose–Einstein condensates. Phys. Rev. A 86(6), 061601 (2012)

    Article  Google Scholar 

  16. Zhang, W., Yi, S., You, L.: Mean field ground state of a spin-1 condensate in a magnetic field. New J. Phys. 5(1), 77 (2003)

    Article  Google Scholar 

  17. Matuszewski, M., Alexander, T.J., Kivshar, Y.S.: Excited spin states and phase separation in spinor Bose–Einstein condensates. Phys. Rev. A 80(2), 023602 (2009)

    Article  Google Scholar 

  18. Matuszewski, M.: Ground states of trapped spin-1 condensates in magnetic field. Phys. Rev. A 82(5), 053630 (2010)

    Article  Google Scholar 

  19. Matuszewski, M., Alexander, T.J., Kivshar, Y.S.: Spin-domain formation in antiferromagnetic condensates. Phys. Rev. A 78(2), 023632 (2008)

    Article  Google Scholar 

  20. Mur-Petit, J.: Spin dynamics and structure formation in a spin-1 condensate in a magnetic field. Phys. Rev. A 79(6), 063603 (2009)

    Article  Google Scholar 

  21. Bookjans, E.M., Vinit, A., Raman, C.: Quantum phase transition in an antiferromagnetic spinor Bose–Einstein condensate. Phys. Rev. Lett. 107(19), 195306 (2011)

    Article  Google Scholar 

  22. Vinit, A., Bookjans, E., de Melo, C.S., Raman, C.: Antiferromagnetic spatial ordering in a quenched one-dimensional spinor gas. Physical Rev. Lett. 110(16), 165301 (2013)

    Article  Google Scholar 

  23. Bao, W., Zhang, Y.: Dynamical laws of the coupled gross-pitaevskii equations for spin-1 Bose–Einstein condensates. Methods Appl. Anal. 17(1), 49–80 (2010)

    MATH  MathSciNet  Google Scholar 

  24. Cao, D., Chern, I.-L., Wei, J.-C.: On ground state of spinor Bose–Einstein condensates. Nonlinear Differ. Equ. Appl. (NoDEA) 18(4), 427–445 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lin, L., Chern, I.-L.: A kinetic energy reduction technique and characteristics of the ground states of spin-1 Bose–Einstein condensates. Discret. Contin. Dyn. Syst. Ser. B 19(4), 1119–1128 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  26. Bao, W., Lim, F.Y.: Computing ground states of spin-1 Bose–Einstein condensates by the normalized gradient flow. SIAM J. Sci. Comput. 30(4), 1925–1948 (2008)

    Article  MathSciNet  Google Scholar 

  27. Wang, Y.-S., Chien, C.-S.: A two-parameter continuation method for computing numerical solutions of spin-1 Bose–Einstein condensates. J. Comput. Phys. 256, 198–213 (2014)

    Article  MathSciNet  Google Scholar 

  28. Lim, F.Y., Bao, W.: Numerical methods for computing the ground state of spin-1 Bose–Einstein condensates in a uniform magnetic field. Phys. Rev. E 78(6), 066704 (2008)

    Article  Google Scholar 

  29. Mittelmann, H.D.: A pseudo-arclength continuation method for nonlinear eigenvalue problems. SIAM J. Numer. Anal. 23(5), 1007–1016 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  30. Allgower, E.L., Georg, K.: Numerical Continuation Methods, vol. 13. Springer, Berlin (1990)

    MATH  Google Scholar 

  31. Kuo, Y.-C., Lin, W.-W., Shieh, S.-F., Wang, W.: A minimal energy tracking method for non-radially symmetric solutions of coupled nonlinear schrödinger equations. J. Comput. Phys. 228(21), 7941–7956 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  32. Romano, D.R., de Passos, E.J.V.: Population and phase dynamics of f = 1 spinor condensates in an external magnetic field. Phys. Rev. A 70(4), 043614 (2004)

    Article  Google Scholar 

  33. Chien, C.-S., Chang, S.-L., Wu, B.: Two-stage continuation algorithms for bloch waves of Bose–Einstein condensates in optical lattices. Comput. Phys. Commun. 181(10), 1727–1737 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  34. Kuo, Y.-C., Shieh, S.-F., Wang, W.: Rotational quotient procedure: a tracking control continuation method for pdes on radially symmetric domains. Comput. Phys. Commun. 183(4), 998–1001 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  35. Bao, W., Chern, I.-L., Zhang, Y.: Efficient numerical methods for computing ground states of spin-1 Bose–Einstein condensates based on their characterizations. J. Comput. Phys. 253, 189–208 (2013)

    Article  MathSciNet  Google Scholar 

  36. Van Kempen, E., Kokkelmans, S., Heinzen, D., Verhaar, B.: Interisotope determination of ultracold rubidium interactions from three high-precision experiments. Physical Rev. Lett. 88(9), 093201 (2002)

    Article  Google Scholar 

  37. Gerbier, F., Widera, A., Fölling, S., Mandel, O., Bloch, I.: Resonant control of spin dynamics in ultracold quantum gases by microwave dressing. Phys. Rev. A 73(4), 041602 (2006)

    Article  Google Scholar 

  38. Leslie, S., Guzman, J., Vengalattore, M., Sau, J.D., Cohen, M.L., Stamper-Kurn, D.: Amplification of fluctuations in a spinor Bose–Einstein condensate. Phys. Rev. A 79(4), 043631 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the anonymous referees for their useful comments and suggestions. This work is partially supported by the National Center for Theoretical Sciences and the National Science Council of the Republic of China under contract numbers: NSC 102-2115-M-134-004 (Chen), NSC 102-2115-M-009-013 (Chern), and NSC 100-2628-M-002-011-MY4 (Wang).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I-Liang Chern.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, JH., Chern, IL. & Wang, W. A Complete Study of the Ground State Phase Diagrams of Spin-1 Bose–Einstein Condensates in a Magnetic Field Via Continuation Methods. J Sci Comput 64, 35–54 (2015). https://doi.org/10.1007/s10915-014-9924-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9924-z

Keywords

Navigation