Skip to main content
Log in

Computing Interacting Multi-fronts in One Dimensional Real Ginzburg Landau Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We develop an efficient and robust numerical scheme to compute multi-fronts in one-dimensional real Ginzburg–Landau equations that range from well-separated to strongly interacting and colliding. The scheme is based on the global centre-manifold reduction where one considers an initial sum of fronts plus a remainder function (not necessarily small) and applying a suitable projection based on the neutral eigenmodes of each front. Such a scheme efficiently captures the weakly interacting tails of the fronts. Furthermore, as the fronts become strongly interacting, we show how they may be added to the remainder function to accurately compute through collisions. We then present results of our numerical scheme applied to various real Ginzburg Landau equations where we observe colliding fronts, travelling fronts and fronts converging to bound states. Finally, we discuss how this numerical scheme can be extended to general PDE systems and other multi-localised structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Throughout this paper we will use the terms front and kink interchangeably and similarly for back and anti-kink.

References

  1. Akhmediev, Nail, Ankiewicz, Adrian: Solitons: Nonlinear Pulses and Beams, vol. 4. Chapman & Hall, London (1997)

    Google Scholar 

  2. Ascher, U.M., Russell, R.D. (eds.): Numerical Boundary Value ODEs, volume 5 of Progress in Scientific Computing. Birkhäuser Boston Inc., Boston, MA (1985)

    Google Scholar 

  3. Bär, M., Eiswirth, M., Rotermund, H.-H., Ertl, G.: Solitary-wave phenomena in an excitable surface reaction. Phys. Rev. Lett. 69, 945–948 (1992)

    Article  Google Scholar 

  4. Doedel, E.J., Paffenroth, R.C., Champneys, A.R., Fairgrieve, T.F., Kuznetsov, Yu, A., Oldeman, B.E., Sandstede B.: Auto07p: Continuation and Bifurcation Software for Ordinary Differential Equations. Technical report, Concordia University, Department of Computer Science, Montreal, Canada. http://www.dynamicalsystems.org/ (2007)

  5. Eckmann, J.-P., Rougemont, J.: Coarsening by Ginzburg–Landau dynamics. Commun. Math. Phys. 199(2), 441–470 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ei, S.-I.: The motion of weakly interacting pulses in reaction-diffusion systems. J. Dyn. Differ. Equ. 14(1), 85–137 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Friedman, M.J., Doedel, E.J.: Numerical computation and continuation of invariant manifolds connecting fixed points. SIAM J. Numer. Anal. 28(3), 789–808 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gorshkov, K.A., Ostrovsky, L.A., Papko, V.V., Pikovsky, A.S.: On the existence of stationary multisolitons. Phys. Lett. A 74(3–4), 177–179 (1979)

    Article  MathSciNet  Google Scholar 

  9. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840. Springer, Berlin (1981)

  10. Kahaner, D., Moler, C., Nash, S.: Numerical Methods and Software. Prentice Hall, Englewood Cliffs, 1989, 1 (1989)

  11. Merkin, J.H., Petrov, V., Scott, S.K., Showalter, K.: Wave-induced chemical chaos. Phys. Rev. Lett. 76, 546–549 (Jan 1996)

  12. Murray, J.D.: Mathematical Biology, 3rd edn. I, volume 17 of Interdisciplinary Applied Mathematics. An Introduction. Springer, New York (2002)

  13. Nishiura, Y., Teramoto, T., Ueda, K.: Scattering of traveling spots in dissipative systems. Chaos Interdiscip. J. Nonlinear Sci. 15(4), 047509 (2005)

    Article  MathSciNet  Google Scholar 

  14. Nishiura, Y., Teramoto, T., Ueda, K.-I.: Scattering and separators in dissipative systems. Phys. Rev. E 67, 056210 (May 2003)

  15. Nishiura, Y., Ueyama, D.: A skeleton structure of self-replicating dynamics. Phys. D Nonlinear Phenom. 130(1), 73–104 (1999)

    Article  MATH  Google Scholar 

  16. Oldeman, B.E., Champneys, A.R., Krauskopf, B.: Homoclinic branch switching: a numerical implementation of Lin’s method. Int. J. Bifurc. Chaos Appl. Sci. Eng. 13(10), 2977–2999 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rougemont, J.: Dynamics of kinks in the Ginzburg–Landau equation: approach to a metastable shape and collapse of embedded pairs of kinks. Nonlinearity 12(3), 539–554 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sandstede, B., Jones, C.K.R.T., Alexander, J.C.: Existence and stability of \(N\)-pulses on optical fibers with phase-sensitive amplifiers. Phys. D 106(1–2), 167–206 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Sandstede, B.: Convergence estimates for the numerical approximation of homoclinic solutions. IMA J. Numer. Anal. 17(3), 437–462 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sandstede, B.: Stability of travelling waves. Handb. Dyn. Syst. 2, 983–1055 (2002)

    Article  MathSciNet  Google Scholar 

  21. Scheel, A., Wright, J.D.: Colliding dissipative pulses-the shooting manifold. J. Differ. Equ. 245(1), 59–79 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Shampine, L.F.: Numerical Solution of Ordinary Differential Equations. Chapman & Hall, New York (1994)

    MATH  Google Scholar 

  23. Shampine, L.F., Reichelt, M.W.: The MATLAB ODE suite. SIAM J. Sci. Comput. 18(1), 1–22 (1997). (Dedicated to C. William Gear on the occasion of his 60th birthday)

    Article  MATH  MathSciNet  Google Scholar 

  24. Smith, G.D.: Numerical Solution of Partial Differential Equations, 2nd edn. Clarendon Press, Oxford (1978)

    MATH  Google Scholar 

  25. Volpert, A.I., Volpert, V.A., Volpert, V.A.: Traveling Wave Solutions of Parabolic Systems, volume 140 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI. Translated from the Russian manuscript by James F. Heyda (1994)

  26. Yew, A.C., Champneys, A.R., McKenna, P.J.: Multiple solitary waves due to second-harmonic generation in quadratic media. J. Nonlinear Sci. 9(1), 33–52 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  27. Zelik, S., Mielke, A.: Multi-pulse evolution and space-time chaos in dissipative systems. Mem. Am. Math. Soc. 198(925), vi+97 (2009)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tasos Rossides.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rossides, T., Lloyd, D.J.B. & Zelik, S. Computing Interacting Multi-fronts in One Dimensional Real Ginzburg Landau Equations. J Sci Comput 63, 799–819 (2015). https://doi.org/10.1007/s10915-014-9917-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9917-y

Keywords

Navigation