Skip to main content
Log in

Parameter Range Reduction in Ordinary Differential Equation Models

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper presents an algorithm for parameter range reduction in systems of ordinary differential equations. Parameter values are assumed only to be known to lie in potentially large regions of parameter space. Interval arithmetic and a family of monotonic discretizations are used to prune regions of parameter space that are inconsistent with given time series data. The algorithm is tested on two ordinary differential equation models and the reduced ranges are shown to significantly improve the performance of traditional parameter estimation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bard, Y.: Comparison of gradient methods for the solution of nonlinear parameter estimation problems. SIAM J. Numer. Anal. 7, 157–186 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  2. Gonzalez, O., Kuper, C., Jung, K., Naval, P., Mendoza, E.: Parameter estimation using simulated annealing for S-system models of biochemical networks. Bioinformatics 23(4), 480–486 (2007)

    Article  Google Scholar 

  3. Guus, C., Boender, E., Romeijn, H.: Stochastic methods. In: Horst, R., Pardalos, P. (eds.) Handbook of Global Optimization, pp. 829–869. Kluwer, Dordrecht (1995)

    Google Scholar 

  4. Hansen, E., Walster, G.: Global Optimization Using Interval Analysis. Pure and Applied Mathematics, 2nd edn. M. Dekker, New York (2004)

    Google Scholar 

  5. Knott, G., Kerner, D.: MLAB Applications Manual. Civilized Software Inc, Bethesda, MD (2004). http://www.civilized.com/files/appman.pdf

  6. Moles, C., Mendes, P., Banga, J.: Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res. 13, 2467–2474 (2003)

    Article  Google Scholar 

  7. Moore, R.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)

    MATH  Google Scholar 

  8. Moore, R.: Methods and Applications of Interval Analysis. Studies in Applied Mathematics. SIAM, Philadelphia (1979)

    Book  Google Scholar 

  9. Ratschek, H., Rokne, J.: Computer Methods for the Range of Functions. Mathematics and Its Applications. Ellis Horwood Limited, New York (1984)

    Google Scholar 

  10. Skelton, A., Willms, A.: An algorithm for continuous piecewise linear bounding of discrete time series data. To appear in BIT Numerical Mathematics (2014)

  11. Szusz, E., Willms, A.: A linear time algorithm for near minimax continuous piecewise linear representations of discrete data. SIAM J. Sci. Comput. 32, 2584–2602 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ugray, Z.: Scatter search and local nlp solvers: a multistart framework for global optimization. Inf. J. Comput. 19(3), 328–340 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Willms, A.: Parameter range reduction for ODE models using cumulative backward differentiation formulas. J. Comput. Appl. Math. 203, 87–102 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Willms, A., Szusz, E.: Parameter range reduction for ODE models using monotonic discretizations. Comput. Appl. Math. 247, 124–151 (2013)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by an Ontario Graduate Scholarship, a Natural Sciences and Engineering Council of Canada (NSERC) Postgraduate Scholarship and a NSERC Discovery Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Skelton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skelton, A., Willms, A.R. Parameter Range Reduction in Ordinary Differential Equation Models. J Sci Comput 62, 517–531 (2015). https://doi.org/10.1007/s10915-014-9865-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9865-6

Keywords

Navigation