Skip to main content
Log in

Non-Overlapping Domain Decomposition Methods For Dual Total Variation Based Image Denoising

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper non-overlapping domain decomposition methods for the pre-dual total variation minimization problem are introduced. Both parallel and sequential approaches are proposed for these methods for which convergence to a minimizer of the original problem is established. The associated subproblems are solved by a semi-smooth Newton method. Several numerical experiments are presented, which show the successful application of the sequential and parallel algorithm for image denoising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs, vol. xviii. Clarendon Press, Oxford (2000)

    MATH  Google Scholar 

  2. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing. Partial Differential Equations and the Calculus of Variation. Springer, New York (2002)

  3. Bertsekas, D.: Constrained Optimization and Lagrange Multiplier Methods. Academic Press, New York (1982)

    MATH  Google Scholar 

  4. Carstensen, C.: Domain decomposition for a non-smooth convex minimization problem and its application to plasticity. Num. Linear Algebra Appl. 4, 177–190 (1998)

    Article  MathSciNet  Google Scholar 

  5. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1–2), 89–97 (2004)

    MathSciNet  Google Scholar 

  6. Chambolle, A., Caselles, V., Cremers, D., Novaga, M., Pock, T.: An Introduction to Total Variation for Image Analysis. In: Fornasier, M. (ed.) Theoretical Foundations and Numerical Methods for Sparse Recovery, Radon Series on Computational and Applied Mathematics, vol. 9, pp. 263–340. De Gruyter Verlag, Berlin (2010)

    Google Scholar 

  7. Chambolle, A., Darbon, J.: On total variation minimization and surface evolution using parametric maximum flows. Int. J. Comput. Vis. 84, 288–307 (2009)

    Article  Google Scholar 

  8. Chambolle, A., Lions, P.-L.: Image recovery via total variation minimization and related problems. Numer. Math. 76(2), 167–188 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal-dual method for total variation-based image restoration. SIAM J. Sci. Comput. 20(6), 1964–1977 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chan, T.F., Mathew, T.P.: Domain decomposition algorithms. Acta Numerica 3, 61–143 (1994)

    Article  MathSciNet  Google Scholar 

  11. Chan, T.F., Shen, J.: Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods. SIAM, Philadelphia (2005)

    Book  Google Scholar 

  12. Chang, H., Zhang, X., Tai, X.-C., and Yang, D.: Domain decomposition methods for nonlocal total variation image restoration, J. Sci. Comput., published online, Oct 2013. doi:10.1007/s10915-013-9786-9

  13. Chen, K., Tai, X.-C.: A nonlinear multigrid method for total variation minimization from image restoration. J. Sci. Comput. 33, 115–138 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4(4), 1168–1200 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Daubechies, I., Teschke, G., Vese, L.: Iteratively solving linear inverse problems under general convex constraints. Inverse Prob. Imaging 1(1), 29–46 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dobson, D., Vogel, C.R.: Convergence of an iterative method for total variation denoising. SIAM J. Numer. Anal. 34(5), 1779–1791 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Duan, Y., Tai, X.-C.: Domain decomposition methods with graph cuts algorithms for total variation minimization. Adv. Comput. Math. 36, 175–199 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  19. Fornasier, M., Kim, Y., Langer, A., Schönlieb, C.-B.: Wavelet decomposition method for \(L_2\)/TV-image deblurring. SIAM J. Imaging Sci. 5, 857–885 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Fornasier, M., Langer, A., Schönlieb, C.-B.: Domain Decomposition Methods for Compressed Sensing. In: Proceedings of the International Conference of SampTA09, Marseilles, 2009. arXiv:0902.0124v1 [math.NA].

  21. Fornasier, M., Langer, A., Schönlieb, C.-B.: A convergent overlapping domain decomposition method for total variation minimization. Num. Math. 116, 645–685 (2010)

    Article  MATH  Google Scholar 

  22. Fornasier, M., Schönlieb, C.-B.: Subspace correction methods for total variation and \(\ell _1\)-minimization. SIAM J. Numer. Anal. 47, 3397–3428 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7(3), 1005–1028 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Birkhuser, Boston (1984)

    Book  MATH  Google Scholar 

  25. Hintermüller, M., Kunisch, K.: Total Bounded Variation Regularization as a Bilaterally Constrained Optimization Problem. SIAM J. Appl. Math. 64(4), 1311–1333 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hintermüller, M. and Langer, A.: Subspace Correction Methods for a Class of Non-smooth and Non-additive Convex Variational Problems in Image Processing, accepted by SIAM J. Imaging Sciences, 2013, pp. 34

  27. Hintermüller, M. and Langer, A.: Surrogate Functional Based Subspace Correction Methods for Image Processing. In: Proceedings of the 21st International Conference on Domain Decomposition Methods, Renne, 2012

  28. Hintermüller, M., Rautenberg, C. N.: On the density of classes of closed, convex sets in Sobolev spaces arising from pointwise constraints on function values, the gradient or the divergence, IFB-Report No. 71 (09/2013) Institute of Mathematics and Scientific Computing, University of Graz

  29. Hintermüller, M., Stadler, G.: An infeasible primal-dual algorithm for total bounded variation-based Inf-convolution-type image restoration. SIAM J. Sci. Comput. 28(1), 1–23 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. Ito, K., Kunisch, K.: Lagrange Multiplier Approach to Variational Problems and Applications, Series: Advances in Design and Control (No. 15) SIAM, 2008

  31. Langer, A., Osher, S., Schönlieb, C.-B.: Bregmanized domain decomposition for image restoration. J. Sci. Comput. 54, 549–576 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  32. Müller, J.: Parallel total variation minimization, Master thesis, University of Münster, 2008

  33. Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Prog. Ser. A. 103, 127–152 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  34. Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul. 4(2), 460–489 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  35. Peyré, G., Bougleux, S. and Cohen, L. Non-local regularization of inverse problems, in ECCV 2008, Part III, Lecture Notes in Comput. Sci. 5304, Springer, Berlin, Heidelberg, pp. 57–68, 2008

  36. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  37. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)

    Article  MATH  Google Scholar 

  38. Schönlieb, C.-B.: Total variation minimization with an \(H^{-1}\) constraint, CRM Series 9, pp. 201–232. Scuola Normale Superiore Pisa, Singularities in Nonlinear Evolution Phenomena and Application proceedings (2009)

  39. Tai, X.-C.: Rate of convergence for some constraint decomposition methods for nonlinear variational inequalities. Num. Math. 93(4), 755–786 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  40. Tai, X.-C., Tseng, P.: Convergence rate analysis of an asynchronous space decomposition method for convex minimization. Math. Comput. 71, 1105–1135 (2001)

    Article  MathSciNet  Google Scholar 

  41. Tai, X.-C., Xu, J.: Global and uniform convergence of subspace correction methods for some convex optimization problems. Math. Comput. 71, 105–124 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  42. Tseng, P., Yun, S.: A coordinate gradient descent method for nonsmooth separable minimization. Math. Prog. Ser. B. 117, 387–423 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  43. Vese, L.: A study in the BV space of a denoising-deblurring variational problem. Appl. Math. Optim. 44, 131–161 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  44. Xu, J., Tai, X.-C., Wang, L.-L.: A two-level domain decomposition method for image restoration. Inverse Prob. Imaging 4(3), 523–545 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  45. Xu, J., Zou, J.: Some nonoverlapping domain decomposition methods. SIAM Rev. 40(4), 857–914 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  46. Zhang, X.Q., Burger, M., Bresson, X., Osher, S.: Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM J. Imaging Sci. 3(3), 253–276 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  47. Zhang, X.Q., Chan, T.F.: Wavelet inpainting by nonlocal total variation. Inverse Prob. Imaging 4(1), 191–210 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Langer.

Additional information

This work was supported by the Austrian Science Fund FWF through the START Project Y 305-N18 “Interfaces and Free Boundaries” and the SFB Project F32 04-N18 “Mathematical Optimization and Its Applications in Biomedical Sciences”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hintermüller, M., Langer, A. Non-Overlapping Domain Decomposition Methods For Dual Total Variation Based Image Denoising. J Sci Comput 62, 456–481 (2015). https://doi.org/10.1007/s10915-014-9863-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9863-8

Keywords

Navigation