Skip to main content
Log in

Variational Space–Time Methods for the Wave Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this work we present some new variational space–time discretisations for the scalar-valued acoustic wave equation as a prototype model for the vector-valued elastic wave equation. The second-order hyperbolic equation is rewritten as a first-order in time system of equations for the displacement and velocity field. For the discretisation in time we apply continuous Galerkin–Petrov and discontinuous Galerkin methods, and for the discretisation in space we apply the symmetric interior penalty discontinuous Galerkin method. The resulting algebraic system of equations exhibits a block structure. First, it is simplified by some calculations to a linear system for one of the variables and a vector update for the other variable. Using the block diagonal structure of the mass matrix from the discontinuous Galerkin discretisation in space, the reduced system can be condensed further such that the overall linear system can be solved efficiently. The convergence behaviour of the presented schemes is studied carefully by numerical experiments. Moreover, the performance and stability properties of the schemes are illustrated by a more sophisticated problem with complex wave propagation phenomena in heterogeneous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions (with Formulas, Graphs, and Mathematical Tables), “25.4, Integration”. Dover Books on Mathematics, New York (1972)

  2. Ahmed, N., Matthies, G.: Numerical studies of Galerkin-type time-discretizations applied to transient convection–diffusion–reaction equations. World Acad. Sci. Eng. Technol. 66, 586–593 (2012)

    Google Scholar 

  3. Ainsworth, M., Monk, P., Muniz, W.: Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation. J. Sci. Comput. 27(1–3), 5–40 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aziz, A.K., Monk, P.: Continuous finite elements in space and time for the heat equation. Math. Comput. 52, 255–274 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bangerth, W., Burstedde, C., Heister, T., Kronbichler, M.: Algorithms and data structures for massively parallel generic adaptive finite element codes. ACM Trans. Math. Softw. (2011). doi:10.1145/2049673.2049678

  7. Bangerth, W., Geiger, M., Rannacher, R.: Adaptive Galerkin finite element methods for the wave equation. Comput. Methos Appl. Math. 10(1), 3–48 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Bangerth, W., Heister, T., Kanschat, G.: deal. II differential equations analysis library. Technical reference (2013). http://www.dealii.org

  9. Bause, M., Köcher, U.: Numerical simulation of elastic wave propagation in composite material. In: Proceedings of the 6th European Congress on Computational Methods in Applied Sciences and Engineering, pp. 1–18 (2012)

  10. Diaz, J., Grote, M.J.: Energy conserving explicit local time stepping for second-order wave equations. J. Sci. Comput. 31(3), 1985–2014 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Efendiev, Y., Hou, T.H.: Multiscale Finite Element Methods. Springer, New York (2009)

    MATH  Google Scholar 

  12. Grote, M.J., Schneebeli, A., Schötzau, D.: Discontinuous Galerkin finite element method for the wave equation. SIAM J. Numer. Anal. 44(6), 2408–2431 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Grote, M.J., Schötzau, D.: Optimal error estimates for the fully discrete interior penalty DG method for the wave equation. J. Sci. Comput. 40, 257–272 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems, 2nd edn. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  15. Heroux, M., et al.: An Overview of Trilinos. Sandia National Laboratories, SAND2003-2927 (2003)

  16. Hoppe, R.H.W., Kanschat, G., Warburton, T.: Convergence analysis of an adaptive interior penalty discontinuous Galerkin method. SIAM J. Numer. Anal. 47(1), 534–550 (2008)

    Article  MathSciNet  Google Scholar 

  17. Hussain, S., Schieweck, F., Turek, S.: Higher order Galerkin time discretizations and fast multigrid solvers for the heat equation. J. Numer. Math. 19(1), 41–61 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hussain, S., Schieweck, F., Turek, S.: Higher order Galerkin time discretization for nonstationary incompressible flow. Numer. Math. Adv. Appl. 2011, 509–517 (2013)

    Google Scholar 

  19. Hussain, S., Schieweck, F., Turek, S.: A note on accurate and efficient higher order Galerkin time stepping schemes for nonstationary Stokes equations. Open Numer. Methods J. 4, 35–45 (2012)

    Article  MathSciNet  Google Scholar 

  20. Kanzow, C.: Numerik linearer Gleichungssysteme, Direkte und iterative Verfahren. Springer, Berlin (2005)

    MATH  Google Scholar 

  21. Lions, J.L., Magenes, E.: Problèmes aus limites non homogènes et applications, 1, 2, 3. Dunod, Paris (1968)

    Google Scholar 

  22. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  23. Matthies, G., Schieweck, F.: Higher order variational time discretizations for nonlinear systems of ordinary differential equations. Preprint no. 23/2011, Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg (2011)

  24. Riviere, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations. SIAM, Philadelphia (2008)

    Book  MATH  Google Scholar 

  25. Schieweck, F.: A-stable discontinuous Galerkin–Petrov time discretization of higher order. J. Numer. Math. 18(1), 25–57 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Thomeé, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (2006)

    MATH  Google Scholar 

  27. Wheeler, M.F.: An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15, 152–161 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wloka, J.: Partial Differential Equations. Cambridge University Press, Cambridge (1987)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Köcher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Köcher, U., Bause, M. Variational Space–Time Methods for the Wave Equation. J Sci Comput 61, 424–453 (2014). https://doi.org/10.1007/s10915-014-9831-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9831-3

Keywords

Navigation