Skip to main content
Log in

Nonperiodic Trigonometric Polynomial Approximation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The most common approach for approximating non-periodic function defined on a finite interval is based on considering polynomials as basis functions. In this paper we will address the non-optimallity of polynomial approximation and suggest to switch from powers of \(x\) to powers of \(\sin (px)\) where \(p\) is a parameter which depends on the dimension of the approximating subspace. The new set does not suffer from the drawbacks of polynomial approximation and by using them one can approximate analytic functions with spectral accuracy. An important application of the new basis functions is related to numerical integration. A quadrature based on these functions results in higher accuracy compared to Legendre quadrature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adcock, B., Huybrechs, D.: On the resolution power of Fourier extensions for oscillatory functions. Technical Report TW597, Dept. Computer Science, K.U. Leuven (2011)

  2. Boyd, J.P.: A comparison of numerical algorithms for Fourier extension of the first, second, and third kinds. J. Comput. Phys. 178, 118–160 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Appl. Comput. Harmonic Anal. 15, 168–176 (2003)

    Article  MATH  Google Scholar 

  4. Carcione, J.: A 2D Chebyshev differential operator for the elastic wave equation. Comput. Methods Appl. Mech. Eng. 130(1–2), 33–45 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, Q.Y., Gottlieb, D., Hesthaven, J.S.: Spectral methods based on prolate spheroidal wave functions for hyperbolic PDEs. SIAM J. Numer. Anal. 43(5), 1912–1933 (2005)

    Google Scholar 

  6. Costa, B., Don, W.S., Simas, A.: Spatial resolution properties of mapped spectral Chebyshev methods. In: Liu, W.-B., Ng, M., Shi, Z.-C. (eds.) Recent Progress in Scientific Computing, pp. 179–188. Science Press, Beijing (2007)

    Google Scholar 

  7. Costa, B., Don, W.S., Simas, A.: Spectral convergence of mapped Chebyshev methods. http://www.dam.brown.edu/scicomp/reports/2003-21/

  8. Davis, P.J.: Interpolation and Approximation. Dover Publication Inc., New-York (1975)

    MATH  Google Scholar 

  9. Don, W.S.: Numerical study of pseudospectral methods in shock–wave applications. J. Comput. Phys. 110(1), 103–111 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Don, W.S., Solomonoff, A.: Accuracy enhancement for higher derivatives using Chebyshev collocation and a mapping technique. SIAM J. Sci. Comput. Arch. 18(4), 1040–1055 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hale, N., Trefethen, L.N.: New quadrature methods from conformal maps. SIAM J. Numer. Anal. 46, 930–948 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Huybrechs, D.: On the Fourier extension of non-periodic functions. SIAM J. Numer. Anal. 47(6), 4326–4355 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Javidi, M.: A modified Chebyshev pseudospectral DD algorithm for the GBH equation. Comput. Math. Appl. Arch. 62(9), 3366–3377 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kosloff, D., Tal-Ezer, H.: Modified Chebyshev pseudospectral methods with \(O(N^{-1})\) time step restriction. J. Comput. Phy. 104(2), 457–469 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Mead, J.L., Zubik-Kowal, B.: An iterated pseudospectral method for functional partial differential equations. Appl. Numer. Math. 55(2), 227–250 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Markushevich, A.I.: Theory of Functions of a Complex Variable. Chelsea, New York (1977)

    MATH  Google Scholar 

  17. Solomonoff, A., Turkel, E.: Global properties of pseudospectral methods. J. Comput. Phys. 81, 239–276 (1989)

    Article  MATH  Google Scholar 

  18. Trefethen, L.N.: Approximation Theory and Approximation Practice. SIAM, Philadelphia (2012)

    Google Scholar 

  19. Walsh, J.L.: Interpolation and Approximation by Rational Functions in the Complex Domain. American Mathematical Society, Providence (1956)

    Google Scholar 

  20. Xiao, H., Rokhlin, V., Yarvin, N.: Prolate spheroidal wavefunctions, quadrature and interpolation. Inverse Problems 17(4), 805–828 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Xiao, H., Rokhlin, V.: High-frequency asymptotic expansions for certain prolate spheroidal wave functions. J. Fourier Anal. Appl. 9(6), 575–596 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hillel Tal-Ezer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tal-Ezer, H. Nonperiodic Trigonometric Polynomial Approximation. J Sci Comput 60, 345–362 (2014). https://doi.org/10.1007/s10915-013-9797-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9797-6

Keywords

Mathematical Subject Classification

Navigation