Skip to main content
Log in

The Local Discontinuous Galerkin Method for the Fourth-Order Euler–Bernoulli Partial Differential Equation in One Space Dimension. Part I: Superconvergence Error Analysis

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we develop and analyze a new superconvergent local discontinuous Galerkin (LDG) method for approximating solutions to the fourth-order Euler–Bernoulli beam equation in one space dimension. We prove the \(L^2\) stability of the scheme and several optimal \(L^2\) error estimates for the solution and for the three auxiliary variables that approximate derivatives of different orders. Our numerical experiments demonstrate optimal rates of convergence. We also prove superconvergence results towards particular projections of the exact solutions. More precisely, we prove that the LDG solution and its spatial derivatives (up to third order) are \(\mathcal O (h^{k+3/2})\) super close to particular projections of the exact solutions for \(k\)th-degree polynomial spaces while computational results show higher \(\mathcal O (h^{k+2})\) convergence rate. Our proofs are valid for arbitrary regular meshes and for \(P^k\) polynomials with \(k\ge 1\), and for periodic, Dirichlet, and mixed boundary conditions. These superconvergence results will be used to construct asymptotically exact a posteriori error estimates by solving a local steady problem on each element. This will be reported in Part II of this work, where we will prove that the a posteriori LDG error estimates for the solution and its derivatives converge to the true errors in the \(L^2\)-norm under mesh refinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adjerid, S., Baccouch, M.: The discontinuous Galerkin method for two-dimensional hyperbolic problems. I: superconvergence error analysis. J. Sci. Comput. 33, 75–113 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Adjerid, S., Baccouch, M.: The discontinuous Galerkin method for two-dimensional hyperbolic problems. II: a posteriori error estimation. J. Sci. Comput. 38, 15–49 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Adjerid, S., Baccouch, M.: Asymptotically exact a posteriori error estimates for a one-dimensional linear hyperbolic problem. Appl. Numer. Math. 60, 903–914 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Adjerid, S., Baccouch, M.: A posteriori local discontinuous Galerkin error estimation for two-dimensional convection–diffusion problems (submitted) (2012)

  5. Adjerid, S., Baccouch, M.: A superconvergent local discontinuous Galerkin method for elliptic problems. J. Sci. Comput. 52, 113–152 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Adjerid, S., Devine, K.D., Flaherty, J.E., Krivodonova, L.: A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems. Comput. Methods Appl. Mech. Eng. 191, 1097–1112 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Adjerid, S., Klauser, A.: Superconvergence of discontinuous finite element solutions for transient convection–diffusion problems. J. Sci. comput. 22, 5–24 (2005)

    Article  MathSciNet  Google Scholar 

  8. Adjerid, S., Massey, T.C.: A posteriori discontinuous finite element error estimation for two-dimensional hyperbolic problems. Comput. Methods Appl. Mech. Eng. 191, 5877–5897 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Adjerid, S., Temimi, H.: A discontinuous Galerkin method for higher-order ordinary differential equations. Comput. Methods Appl. Mech. Eng. 197, 202–218 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Agarwal, R.: On the fourth-order boundary value problems arising in beam analysis. Differ. Integral Equ. 2, 91–110 (1989)

    MATH  Google Scholar 

  11. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Attili, B., Lesnic, D.: An efficient method for computing eigenelements of Sturm–Liouville fourth-order boundary value problems. Appl. Math. Comput. 182, 1247–1254 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Baccouch, M.: A local discontinuous Galerkin method for the second-order wave equation. Comput. Methods Appl. Mech. Eng. 209–212, 129–143 (2012)

    Article  MathSciNet  Google Scholar 

  14. Baccouch, M.: The local discontinuous Galerkin method for the fourth-order Euler-Bernoulli partial differential equation in one space dimension. Part II: A posteriori error estimation. J. Sci. Comput. (2013). doi:10.1007/s10915-013-9783-z

  15. Baccouch, M., Adjerid, S.: Discontinuous Galerkin error estimation for hyperbolic problems on unstructured triangular meshes. Comput. Methods Appl. Mech. Eng. 200, 162–177 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131, 267–279 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Baumann, C.E., Oden, J.T.: A discontinuous hp finite element method for convection–diffusion problems. Comput. Methods Appl. Mech. Eng. 175, 311–341 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Bey, K.S., Oden, J.T.: hp-version discontinuous Galerkin method for hyperbolic conservation laws. Comput. Methods Appl. Mech. Eng. 133, 259–286 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Bey, K.S., Oden, J.T., Patra, A.: hp-version discontinuous Galerkin method for hyperbolic conservation laws: a parallel strategy. Int. J. Numer. Methods Eng. 38, 3889–3908 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  20. Bey, K.S., Oden, J.T., Patra, A.: A parallel hp-adaptive discontinuous Galerkin method for hyperbolic conservation laws. Appl. Numer. Math. 20, 321–386 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  21. Biswas, R., Devine, K., Flaherty, J.E.: Parallel adaptive finite element methods for conservation laws. Appl. Numer. Math. 14, 255–284 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  22. Bottcher, K., Rannacher, R.: Adaptive error control in solving ordinary differential equations by the discontinuous Galerkin method. Technical report, University of Heidelberg (1996)

  23. Castillo, P.: A superconvergence result for discontinuous Galerkin methods applied to elliptic problems. Comput. Methods Appl. Mech. Eng. 192, 4675–4685 (2003)

    Article  MATH  Google Scholar 

  24. Castillo, P., Cockburn, B., Perugia, I., Schötzau, D.: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38, 1676–1706 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  25. Celiker, F., Cockburn, B.: Superconvergence of the numerical traces for discontinuous Galerkin and hybridized methods for convection–diffusion problems in one space dimension. Math. Comput. 76, 67–96 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Cheng, Y., Shu, C.-W.: Superconvergence of discontinuous Galerkin and local discontinuous Galerkin schemes for linear hyperbolic and convection–diffusion equations in one space dimension. SIAM J. Numer. Anal. 47, 4044–4072 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, New York, Oxford (1978)

    MATH  Google Scholar 

  28. Cockburn, B., Kanschat, G., Perugia, I., Schötzau, D.: Superconvergence of the local discontinuous Galerkin method for elliptic problems on cartesian grids. SIAM J. Numer. Anal. 39, 264–285 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  29. Cockburn, B., Karniadakis, G.E., Shu, C.W.: Discontinuous Galerkin Methods Theory, Computation and Applications, Lecture Notes in Computational Science and Engineering, vol. 11. Springer, Berlin (2000)

    Google Scholar 

  30. Cockburn, B., Lin, S.Y., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin methods of scalar conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  31. Cockburn, B., Shu, C.W.: TVB Runge–Kutta local projection discontinuous Galerkin methods for scalar conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

    MATH  MathSciNet  Google Scholar 

  32. Cockburn, B., Shu, C.W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  33. Delfour, M., Hager, W., Trochu, F.: Discontinuous Galerkin methods for ordinary differential equation. Math. Comput. 154, 455–473 (1981)

    Article  MathSciNet  Google Scholar 

  34. Devine, K.D., Flaherty, J.E.: Parallel adaptive hp-refinement techniques for conservation laws. Comput. Methods Appl. Mech. Eng. 20, 367–386 (1996)

    MATH  MathSciNet  Google Scholar 

  35. Flaherty, J.E., Loy, R., Shephard, M.S., Szymanski, B.K., Teresco, J.D., Ziantz, L.H.: Adaptive local refinement with octree load-balancing for the parallel solution of three-dimensional conservation laws. J. Parallel Distrib. Comput. 47, 139–152

  36. Greenberg, L., Marletta, M.: Oscillation theory and numerical solution of fourth-order Sturm–Liouville problem. IMA J. Numer. Anal. 15, 319–356 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  37. Gupta, C.: Existence and uniqueness theorems for a bending of an elastic beam equation at resonance. J. Math. Anal. Appl. 135, 208–225 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  38. Johnson, C.: Error estimates and adaptive time-step control for a class of one-step methods for stiff ordinary differential equations. SIAM J. Numer. Anal. 25, 908–926 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  39. Lesaint, P., Raviart, P.: On a finite element method for solving the neutron transport equations. In: de Boor, C. (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations. Academic Press, New York (1974)

    Google Scholar 

  40. Liu, L., Zhang, X., Wu, Y.: Positive solutions of fourth-order nonlinear singular Sturm–Liouville eigenvalue problems. J. Math. Anal. Appl. 326, 1212–1224 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  41. Meng, X., Shu, C.-W., Wu, B.: Superconvergence of the local discontinuous Galerkin method for linear fourth order time dependent problems in one space dimension. IMA J. Numer. Anal. 32, 1294–1328 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  42. Mozolevski, I., Süli, E.: A priori error analysis for the hp-version of the discontinuous Galerkin finite element method for the biharmonic equation. Comput. Methods Appl. Math. 3, 1–12 (2003)

    Article  Google Scholar 

  43. Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation, Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos (1973)

  44. Wheeler, M.F.: An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15, 152–161 (1978)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author would also like to thank the anonymous referees for their constructive comments and remarks which helped improve the quality and readability of the paper. This research was partially supported by the NASA Nebraska Space Grant Program and UCRCA at the University of Nebraska at Omaha.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahboub Baccouch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baccouch, M. The Local Discontinuous Galerkin Method for the Fourth-Order Euler–Bernoulli Partial Differential Equation in One Space Dimension. Part I: Superconvergence Error Analysis. J Sci Comput 59, 795–840 (2014). https://doi.org/10.1007/s10915-013-9782-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9782-0

Keywords

Navigation