Skip to main content
Log in

A Spectral-Element Method for Transmission Eigenvalue Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We develop an efficient spectral-element method for computing the transmission eigenvalues in two-dimensional radially stratified media. Our method is based on a dimension reduction approach which reduces the problem to a sequence of one-dimensional eigenvalue problems that can be efficiently solved by a spectral-element method. We provide an error analysis which shows that the convergence rate of the eigenvalues is twice that of the eigenfunctions in energy norm. We present ample numerical results to show that the method convergences exponentially fast for piecewise stratified media, and is very effective, particularly for computing the few smallest eigenvalues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bruno, O.P., Reitich, F.: High-order boundary perturbation methods. In: Mathematical Modeling in Optical Science, volume 22 of Frontiers Appl. Math., pp. 71–109. SIAM, Philadelphia, PA (2001)

  2. Cakoni, F., Cayoren, M., Colton, D.: Transmission eigenvalues and the nondestructive testing of dielectrics. Inverse Probl. 24, 065016 (2008)

    Article  MathSciNet  Google Scholar 

  3. Cakoni, F., Colton, D., Haddar, H.: On the determination of dirichlet or transmission eigenvalues from far field data. Comptes Rendus Math. 348(7–8), 379–383 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cakoni, F., Colton, D., Monk, P.: On the use of transmission eigenvalues to estimate the index of refraction from far field data. Inverse Probl. 23, 507 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cakoni, F., Colton, D., Monk, P., Sun, J.: The inverse electromagnetic scattering problem for anisotropic media. Inverse Probl. 26, 074 (2010)

    MathSciNet  Google Scholar 

  6. Cakoni, F., Gintides, D., Haddar, H.: The existence of an infinite discrete set of transmission eigenvalues. SIAM J. Math. Anal. 42(1), 237–255 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cakoni, F., Haddar, H.: On the existence of transmission eigenvalues in an inhomogeneous medium. Appl. Anal. 88(4), 475–493 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Colton, D., Monk, P., Sun, J.: Analytical and computational methods for transmission eigenvalues. Inverse Probl. 26, 045011 (2010)

    Article  MathSciNet  Google Scholar 

  9. Colton, D., Paivarinta, L., Sylvester, J.: The interior transmission problem. Inverse Probl. Imaging 1(1), 13 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fang, Q., Nicholls, D., Shen, J.: A stable, high-order method for two-dimensional bounded-obstacle scattering. J. Comput. Phys. 224, 1145–1169 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Golub, G.H., Van Loan, C.F.: Matrix Computations. The John Hopkins University Press, Baltimore (1989)

    MATH  Google Scholar 

  12. He, Y., Nicholls, D.P., Shen, J.: An efficient and stable spectral method for electromagnetic scattering from a layered periodic structure. J. Comput. Phys. 231(8), 3007–3022 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ji, X., Sun, J., Turner, T.: Al- gorithm 922: a mixed finite element method for helmholtz trans- mission eigenvalues. ACM Transaction on Math. Soft. 38 (2012)

  14. Kirsch, A.: On the existence of transmission eigenvalues. Inverse Probl. Imaging 3(2), 155–172 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kwan, Y., Shen, J.: An efficient direct parallel elliptic solver by the spectral element method. J. Comput. Phys. 225, 1721–1735 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nicholls, D., Shen, J.: A stable, high-order method for two-dimensional bounded-obstacle scattering. SIAM J. Sci. Comput. 28, 1398–1419 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nicholls, D.P., Reitich, F.: A new approach to analyticity of Dirichlet-Neumann operators. Proc. R. Soc. Edinburgh Sect. A 131(6), 1411–1433 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Päivärinta, L., Sylvester, J.: Transmission eigenvalues. SIAM J. Math. Anal 40(2), 738–753 (2008)

    Google Scholar 

  19. Rynne, B.P., Sleeman, B.D.: The interior transmission problem and inverse scattering from inhomogeneous media. SIAM J. Math. Anal. 22, 1755 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shen, J.: Efficient spectral-Galerkin method I. direct solvers for second- and fourth-order equations by using Legendre polynomials. SIAM J. Sci. Comput. 15, 1489–1505 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shen, J.: Efficient spectral-galerkin methods iii: polar and cylindrical geometries. SIAM J. Sci. Comput. 18(6), 1583–1604 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shen, J., Tang, T., Wang, L.: Spectral Methods: Algorithms, Analysis and Applications, volume 41 of Springer Series in Computational Mathematics. Springer, Berlin (2011)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Shen.

Additional information

The work of J. Shen partially supported by AFOSR grant FA9550-11-1-0328 and NFS grant DMS-1217066.

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, J., Shen, J. A Spectral-Element Method for Transmission Eigenvalue Problems. J Sci Comput 57, 670–688 (2013). https://doi.org/10.1007/s10915-013-9720-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9720-1

Keywords

Mathematics Subject Classification (1991)

Navigation