Skip to main content
Log in

Locally Implicit Time Integration Strategies in a Discontinuous Galerkin Method for Maxwell’s Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

An attractive feature of discontinuous Galerkin (DG) spatial discretization is the possibility of using locally refined space grids to handle geometrical details. However, locally refined meshes lead to severe stability constraints on explicit integration methods to numerically solve a time-dependent partial differential equation. If the region of refinement is small relative to the computational domain, the time step size restriction can be overcome by blending an implicit and an explicit scheme where only the solution variables living at fine elements are treated implicitly. The downside of this approach is having to solve a linear system per time step. But due to the assumed small region of refinement relative to the computational domain, the overhead will also be small while the solution can be advanced in time with step sizes determined by the coarse elements. In this paper, we present two locally implicit time integration methods for solving the time-domain Maxwell equations spatially discretized with a DG method. Numerical experiments for two-dimensional problems illustrate the theory and the usefulness of the implicit–explicit approaches in presence of local refinements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit–explicit Runge-Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25(2), 151–167 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Botchev, M.A., Verwer, J.G.: Numerical integration of damped Maxwell equations. SIAM J. SCI. Comput. 31(2), 1322–1346 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cai, W., Deng, S.: An upwinding embedded boundary method for Maxwell’s equations in media with material interfaces: 2D case. J. Comput. Phys. 190(1), 159–183 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Calvo, M.P., de Frutos, J., Novo, J.: Linearly implicit Runge-Kutta methods for advection reaction diffusion equations. Appl. Numer. Math. 37(4), 535–549 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cockburn, B., Karniadakis, G.E., Shu, C.W.: Discontinuous Galerkin methods. Theory, Computation and Applications. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  6. Crouzeix, M.: Une méthode multipas implicite-explicite pour l’approximation des équations d’évolution paraboliques. Numer. Math. 35(3), 257–276 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  7. Diaz, J., Grote, M.: Energy conserving explicit local time-stepping for second-order wave equations. SIAM J. SCI. Comput. 31(3), 1985–2014 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dolean, V., Fahs, H., Fezoui, L., Lanteri, S.: Locally implicit discontinuous Galerkin method for time domain electromagnetics. J. Comput. Phys. 229(2), 512–526 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fahs, H.: Development of a hp-like discontinuous Galerkin time-domain method on non-conforming simplicial meshes for electromagnetic wave propagation. Int. J. Numer. Anal. Mod. 6(2), 193–216 (2009)

    MathSciNet  MATH  Google Scholar 

  10. Fezoui, L., Lanteri, S., Lohrengel, S., Piperno, S.: Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes. ESAIM: M2AN 39(6), 1149–1176 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grote, M.J., Mitkova, T.: Explicit local time stepping methods for Maxwell’s equations. J. Comp. Appl. Math. 234(12), 3283–3302 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hesthaven, J.S., Warburton, T.: Nodal high-order methods on unstructured grids. I. Time-domain solution of Maxwell’s equations. J. Comput. Phys. 181(1), 186–221 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  14. Kanevsky, A., Carpenter, M.H., Gottlieb, D., Hesthaven, J.S.: Application of implicit-explicit high order Runge-Kutta methods to discontinuous-Galerkin schemes. J. Comput. Phys. 225(2), 1753–1781 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kennedy, C.A., Carpenter, M.H.: Additive RungeKutta schemes for convection-diffusion-reaction equations. Appl. Numer. Math. 44(1–2), 139–181 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Moya, L.: Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell’s equations. ESAIM: M2AN 46(5), 1225–1246 (2012)

    Article  MathSciNet  Google Scholar 

  17. Piperno, S.: Symplectic local time-stepping in non-dissipative DGTD methods applied to wave propagation problem. ESAIM: M2AN 40(5), 815–841 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Los Alamos Scientific Laboratory, Report LAUR-73-479 (1973)

  19. Sármány, D., Botchev, M.A., Van der Vegt, J.J.W.: Dispersion and dissipation error in high-order Runge-Kutta discontinuous Galerkin discretisations of the Maxwell equations. J. Sci. Comput. 33(1), 47–74 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Taube, A., Dumbser, M., Munz, C.D., Schneider, R.: A high order discontinuous Galerkin method with local time stepping for the Maxwell equations. Int. J. Numer. Model. Elec. Netw. Dev. Fields 22(1), 77–103 (2009)

    Article  MATH  Google Scholar 

  21. Varah, J.M.: Stability restrictions on second, three- level finite-difference schemes for parabolic equations. SIAM J. Numer. Anal. 17(2), 300–309 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  22. Verwer, J.G.: Component splitting for semi-discrete Maxwell equations. BIT Numer. Math. 51(2), 427–445 (2010)

    Article  MathSciNet  Google Scholar 

  23. Verwer, J.G., Botchev, M.A.: Unconditionaly stable integration of Maxwell’s equations. Linear Algebra Appl. 431(3–4), 300–317 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wesseling, P.: Principles of Computational Fluid Dynamics. Springer Series in Computational Mathematics, vol. 29. Berlin (2001)

  25. Yee, K.S.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludovic Moya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Descombes, S., Lanteri, S. & Moya, L. Locally Implicit Time Integration Strategies in a Discontinuous Galerkin Method for Maxwell’s Equations. J Sci Comput 56, 190–218 (2013). https://doi.org/10.1007/s10915-012-9669-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-012-9669-5

Keywords

Navigation