Skip to main content
Log in

A Lattice Boltzmann Model for the Reaction-Diffusion Equations with Higher-Order Accuracy

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a lattice Boltzmann model based on the higher-order moment method for the reaction-diffusion equations is proposed. In order to obtain higher-order accuracy of truncation error and to overcome the drawbacks of “error rebound” in the previous models, a new assumption of additional distribution is presented. As results, the reaction-diffusion equations are recovered with the fourth-order accuracy of truncation error. Based on this model, the Fitzhugh-Nagumo equations are simulated. The comparisons between the LBM results and the Alternative Direction Implicit (ADI) results are given in detail. The numerical examples show that the higher-order moment method can be used to raise the accuracy of the truncation error of the lattice Boltzmann scheme for the reaction-diffusion equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frisch, U., Hasslacher, B., Pomeau, Y.: Lattice gas automata for the Navier-Stokes equations. Phys. Rev. Lett. 56, 1505–1508 (1986)

    Article  Google Scholar 

  2. Higuera, F.J., Succi, S., Benzi, R.: Lattice gas dynamics with enhanced collisions. Europhys. Lett. 9, 345–349 (1989)

    Article  Google Scholar 

  3. Higuera, F.J., Jimènez, J.: Boltzmann approach to lattice gas simulations. Europhys. Lett. 9, 663–668 (1989)

    Article  Google Scholar 

  4. Qian, Y.H., d’humieres, D., Lallemand, P.: Lattice BGK model for Navier-Stokes equations. Europhys. Lett. 17(6), 479–484 (1992)

    Article  MATH  Google Scholar 

  5. Chen, H.D., Chen, S.Y., Matthaeus, M.H.: Recovery of the Navier-Stokes equations using a lattice Boltzmann gas method. Phys. Rev. A 45, 5339–5342 (1992)

    Article  Google Scholar 

  6. Benzi, R., Succi, S., Vergassola, M.: The lattice Boltzmann equations: theory and applications. Phys. Rep. 222, 145–197 (1992)

    Article  Google Scholar 

  7. Chen, S.Y., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 3, 314–322 (1998)

    Google Scholar 

  8. Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press, New York (2001)

    MATH  Google Scholar 

  9. Mendoza, M., Boghosian, B.M., Herrmann, H.J., Succi, S.: Fast lattice Boltzmann solver for relativistic hydrodynamics. Phys. Rev. Lett. 105, 014502 (2010)

    Article  Google Scholar 

  10. Shan, X.W., Chen, H.D.: Simulation of non-ideal gases liquid-gas phase transitions by the lattice Boltzmann equation. Phys. Rev. E 49, 2941–2948 (1994)

    Article  Google Scholar 

  11. Swift, M., Osborn, W., Yeomans, J.: Lattice Boltzmann simulation of nonideal fluids. Phys. Rev. Lett. 75, 830–833 (1995)

    Article  Google Scholar 

  12. Premnath, K.N., Abraham, J.: Three-dimensional multi-relaxation lattice Boltzmann models for multiphase flows. J. Comput. Phys. 224, 539–559 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang, M.R., Kang, Q.J.: Modeling electrokinetic flows in microchannels using coupled lattice Boltzmann methods. J. Comput. Phys. 229, 728–744 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gustensen, K., Rothman, D.H., Zaleski, S., et al.: Lattice Boltzmann model of immiscible fluids. Phys. Rev. A 43, 4320–4327 (1991)

    Article  Google Scholar 

  15. Holdych, D.J., Georgiadis Buckius, R.O.: Migration of a van der Waals bubble: lattice Boltzmann formulation. Phys. Fluids 13, 817–825 (2001)

    Article  Google Scholar 

  16. Swift, M.R., Orlandini, E., Osborn, W.R., et al.: Lattice Boltzmann simulations of liquid-gas and binary systems. Phys. Rev. E 54, 5041–5052 (1996)

    Article  Google Scholar 

  17. Succi, S., Foti, E., Higuera, F.J.: 3-Dimensional flows in complex geometries with the lattice Boltzmann method. Europhys. Lett. 10, 433–438 (1989)

    Article  Google Scholar 

  18. Wang, M.R., Chen, S.Y.: Electroosmosis in homogeneously charged micro- and nanoscale random porous media. J. Colloid Interface Sci. 33, 264–273 (2007)

    Article  Google Scholar 

  19. Ladd, A.: Numerical simulations of particle suspensions via a discredited Boltzmann equation. Part 2. Numerical results. J. Fluid Mech. 271, 311–339 (1994)

    Article  MathSciNet  Google Scholar 

  20. Filippova, O., Hanel, D.: Lattice Boltzmann simulation of gas-particle flow in filters. Comput. Fluids 26, 697–712 (1997)

    Article  MATH  Google Scholar 

  21. Pan, X.F., Xu, A.G., Zhang, G.C., Jiang, S.: Lattice Boltzmann approach to high-speed compressible flows. Int. J. Mod. Phys. C 18, 1747–1764 (2007)

    Article  MATH  Google Scholar 

  22. Hinton, F.L., Rosebblush, M.N., Wang, S.K., Lin-Liu, Y.R., Miller, R.L.: Modified lattice Boltzmann method for compressible fluid simulations. Phys. Rev. E 63, 061212 (2001)

    Article  Google Scholar 

  23. Kataoka, T., Tsutahara, M.: Lattice Boltzmann method for the compressible Euler equations. Phys. Rev. E 69, 056702 (2004)

    Article  MathSciNet  Google Scholar 

  24. Velivelli, A.C., Bryden, K.M.: Parallel performance and accuracy of lattice Boltzmann and traditional finite difference methods for solving the unsteady two-dimensional Burger’s equation. Physica A 362, 139–145 (2006)

    Article  Google Scholar 

  25. Duan, Y.L., Liu, R.X.: Lattice Boltzmann model for two-dimensional unsteady Burgers equation. J. Comput. Appl. Math. 206, 432–439 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yan, G.W., Zhang, J.Y.: A higher-order moment method of the lattice Boltzmann model for the Korteweg-de Vries equation. Math. Comput. Simul. 180, 1054–1062 (2009)

    MathSciNet  MATH  Google Scholar 

  27. Yan, G.W., Yuan, L.: Lattice Bhatnagar-Gross-Krook model for the Lorenz attractor. Physica D 154, 43–50 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Succi, S.: Lattice Boltzmann equation for quantum mechanics. Physica D 69, 327–332 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Succi, S.: Lattice Boltzmann schemes for quantum applications. Comput. Phys. Commun. 146, 317–323 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Succi, S.: Numerical solution of the Schrödinger equation using Discrete Kinetic Theory. Phys. Rev. E 53, 1969–1975 (1996)

    Article  Google Scholar 

  31. Zhong, L.H., Feng, S.D., Dong, P., Gao, S.T.: Lattice Boltzmann schemes for the nonlinear Schrödinger equation. Phys. Rev. E 74, 036704 (2006)

    Article  Google Scholar 

  32. Zhang, J.Y., Yan, G.W.: Lattice Boltzmann model for the complex Ginzburg-Landau equation. Phys. Rev. E 81, 066705 (2010)

    Article  MathSciNet  Google Scholar 

  33. Palpacelli, S., Succi, S., Spigler, R.: Ground-state computation of Bose-Einstein condensates by an imaginary-time quantum lattice Boltzmann scheme. Phys. Rev. E 76, 036712 (2007)

    Article  Google Scholar 

  34. Palpacelli, S., Succi, S.: Quantum lattice Boltzmann simulation of expanding Bose-Einstein condensates in random potentials. Phys. Rev. E 77, 066708 (2008)

    Article  Google Scholar 

  35. Zhou, J.G.: Lattice Boltzmann Methods for Shallow Water Flows. Springer, Berlin (2000)

    Google Scholar 

  36. Ginzburg, I.: Variably saturated flow described with the anisotropic lattice Boltzmann methods. J. Comput. Fluids 25, 831–848 (2006)

    Article  Google Scholar 

  37. Yepez, J.: Relativistic path integral as a lattice-based quantum algorithm. Quantum Inf. Process. 4, 471–509 (2005)

    Article  MathSciNet  Google Scholar 

  38. Hirabayashi, M., Chen, Y., Ohashi, H.: The lattice BGK model for the Poisson equation. JSME Int. J. Ser. B 44, 45–52 (2001)

    Article  Google Scholar 

  39. Chai, Z.H., Shi, B.C.: A novel lattice Boltzmann model for the Poisson equation. Appl. Math. Model. 32, 2050–2058 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, M.R., Wang, J.K., Chen, S.Y.: Roughness and cavitations effect on electro-osmotic flows in rough microchannels using the lattice Poisson-Boltzmann methods. J. Comput. Phys. 266, 836–851 (2007)

    Article  Google Scholar 

  41. Wang, H.M., Yan, G.W., Yan, B.: Lattice Boltzmann model based on the rebuilding-divergency method for the Laplace equation and the poisson equation. J. Sci. Comput. 46, 470–484 (2010)

    Article  MathSciNet  Google Scholar 

  42. Wang, J.K., Wang, M.R., Li, Z.X.: A lattice Boltzmann algorithm for fluid-solid conjugate heat transfer. Int. J. Therm. Sci. 46, 228–234 (2007)

    Article  Google Scholar 

  43. Wang, M.R., Kang, Q.J.: Electrokinetic transport in microchannels with random roughness. Anal. Chem. 81, 2953–2961 (2009)

    Article  Google Scholar 

  44. Wang, M.R., Pan, N.: Predictions of effective physical properties of complex multiphase materials. Mater. Sci. Eng., R 63, 1–30 (2008)

    Article  Google Scholar 

  45. Dawson, S.P., Chen, S.Y., Doolen, G.D.: Lattice Boltzmann computations for reaction-diffusion equations. J. Chem. Phys. 98, 1514–1523 (1993)

    Article  Google Scholar 

  46. Cali, A., Succi, S., Cancelliere, A., et al.: Diffusion and hydrodynamic dispersion with the lattice Boltzmann method. Phys. Rev. A 45, 5771–5774 (1992)

    Article  Google Scholar 

  47. Blaak, R., Sloot, P.M.: Lattice dependence of reaction-diffusion in lattice Boltzmann modeling. Comput. Phys. Commun. 129, 256–266 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  48. Ayodele, S.G., Varnik, F., Raabe, D.: Lattice Boltzmann study of pattern formation in reaction-diffusion systems. Phys. Rev. E 83, 016702 (2011)

    Article  MathSciNet  Google Scholar 

  49. Amati, G., Succi, S., Piva, R.: Massively parallel lattice-Boltzmann simulation of turbulent channel flow. Int. J. Mod. Phys. C 8, 869–877 (1997)

    Article  Google Scholar 

  50. Kandhai, D., Koponen, A., Hoekstra, A.G., et al.: Lattice-Boltzmann hydrodynamics on parallel systems. Comput. Phys. Commun. 111, 14–26 (1998)

    Article  MATH  Google Scholar 

  51. Zhang, J.Y., Yan, G.W.: A lattice Boltzmann model for the Korteweg-de Vries equation with two conservation laws. Comput. Phys. Commun. 180, 1054–1062 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhang, J.Y., Yan, G.W.: A lattice Boltzmann model for the Burgers-Fisher equation. Chaos 20, 023129 (2010)

    Article  MathSciNet  Google Scholar 

  53. Fife, P.C.: Mathematical Aspects of Reacting and Diffusing Systems. Springer, Berlin (1979)

    Book  MATH  Google Scholar 

  54. Murray, J.D.: Mathematical Biology. Springer, New York (1989)

    MATH  Google Scholar 

  55. Weimar, J.R.: Cellular automata for reaction-diffusion systems. Parallel Comput. 23, 1699–1715 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  56. Barkley, D.: Spiral meandering. In: Kapral, R., Showalter, K. (eds.) Chemical Waves and Patterns, pp. 163–189. Kluwer Academic, Norwell (1995)

    Chapter  Google Scholar 

  57. Keener, J.P., Sneyd, J.: Mathematical Physiology, Interdisciplinary Applied Mathematics. Springer, New York (1998)

    MATH  Google Scholar 

  58. Winfree, A.T.: Varieties of spiral wave behavior: an experimentalist approach to the theory of excitable media. Chaos 1, 303–334 (1991)

    Article  MathSciNet  Google Scholar 

  59. Bar, M., Gottschalk, N., Eiswirth, M., Ertl, G.: Spiral waves in a surface reaction: model calculations. J. Chem. Phys. 100, 1202–1214 (1994)

    Article  Google Scholar 

  60. Krinsky, V., Pumir, A.: Models of defibrillation of cardiac tissue. Chaos 8, 188–203 (1998)

    Article  Google Scholar 

  61. Barkley, D.: A model for fast computer simulation of excitable media. Physica D 49, 61–70 (1991)

    Article  Google Scholar 

  62. Karma, A.: Meandering transition in two-dimensional excitable media. Phys. Rev. Lett. 65, 2824–2828 (1990)

    Article  Google Scholar 

  63. Mitkov, I., Aranson, I., Kessler, D.: Meandering instability of a spiral interface in the free boundary limit. Phys. Rev. E 54, 6065–6069 (1996)

    Article  Google Scholar 

  64. Olmos, D., Shizgal, B.D.: Pseudospectral method of solution of the Fitzhugh–Nagumo equation. Math. Comput. Simul. 79, 2258–2278 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  65. Amdjadi, F., Gomatam, J.: Spiral waves on static and moving spherical domains. J. Comput. Appl. Math. 182, 472–486 (2005)

    Article  MathSciNet  Google Scholar 

  66. Xie, F., Qu, Z., Weiss, J., Garfinkel, A.: Coexistence of multiple spiral waves with independent frequencies in a heterogeneous excitable medium. Phys. Rev. E 63, 031905 (2001)

    Article  Google Scholar 

  67. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gas. Cambridge University Press, Cambridge (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangwu Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Yan, G. A Lattice Boltzmann Model for the Reaction-Diffusion Equations with Higher-Order Accuracy. J Sci Comput 52, 1–16 (2012). https://doi.org/10.1007/s10915-011-9530-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9530-2

Keywords

Navigation