Skip to main content
Log in

Summation by Parts Operators for Finite Difference Approximations of Second-Derivatives with Variable Coefficients

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

An Erratum to this article was published on 31 December 2011

Abstract

Finite difference operators approximating second derivatives with variable coefficients and satisfying a summation-by-parts rule have been derived for the second-, fourth- and sixth-order case by using the symbolic mathematics software Maple. The operators are based on the same norms as the corresponding approximations of the first derivative, which makes the construction of stable approximations to general multi-dimensional hyperbolic-parabolic problems straightforward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Appelö, D., Petersson, N.A.: A stable finite difference method for the elastic wave equation on complex geometries with free surfaces. J. Comput. Phys. 5, 84–107 (2009)

    Google Scholar 

  2. Bamberger, A., Glowinski, R., H Tran, Q.: A domain decomposition method for the acoustic wave equation with discontinuous coefficients and grid change. SIAM J. Numer. Anal. 34(2), 603–639 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Calabrese, G.: Finite differencing second order systems describing black holes. Phys. Rev. D, Part. Fields 71, 027501 (2005)

    Article  MathSciNet  Google Scholar 

  4. Carpenter, M.H., Gottlieb, D., Abarbanel, S.: Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes. J. Comput. Phys. 111(2), 220–236 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cohen, G., Joly, P.: Construction and analysis of fourth-order finite difference schemes for the acoustic wave equation in nonhomogeneous media. SIAM J. Numer. Anal. 33(4), 1266–1302 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Grote, M., Schneebeli, A., Schötzau, D.: Discontinuous Galerkin finite element method for the wave equation. SIAM J. Numer. Anal. 44, 2408–2431 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Grote, M., Schneebeli, A., Schötzau, D.: Interior penalty discontinuous Galerkin method for Maxwell’s equations: energy norm error estimates. J. Comput. Appl. Math. 204, 375–386 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gustafsson, B.: The convergence rate for difference approximations to general mixed initial boundary value problems. SIAM J. Numer. Anal. 18(2), 179–190 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gustafsson, B., Kreiss, H.-O., Oliger, J.: Time dependent problems and difference methods. Wiley, New York, (1995)

    MATH  Google Scholar 

  10. Gustafsson, B., Wahlund, P.: Time compact difference methods for wave propagation in discontinuous media. SIAM J. Sci. Comput. 26, 272–293 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kamakoti, R., Pantano, C.: High-order narrow stencil finite-difference approximations of second-order derivatives involving variable coefficients. SIAM J. Sci. Comput. 31(6), 4222–4243 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kelly, K.R., Ward, R.W., Treitel, S., Alford, R.M.: Synthetic seismograms: a finite difference approach. Geophysics 41, 2–27 (1976)

    Article  Google Scholar 

  13. Kreiss, H.-O., Petersson, N.A., Yström, J.: Difference approximations for the second order wave equation. SIAM J. Numer. Anal. 40, 1940–1967 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mattsson, K., Carpenter, M.H.: Stable and accurate interpolation operators for high-order multi-block finite-difference methods. SIAM J. Sci. Comput. 32(4), 2298–2320 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mattsson, K., Ham, F., Iaccarino, G.: Stable and accurate wave propagation in discontinuous media. J. Comput. Phys. 227, 8753–8767 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mattsson, K., Nordström, J.: Summation by parts operators for finite difference approximations of second derivatives. J. Comput. Phys. 199(2), 503–540 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mattsson, K., Svärd, M., Nordström, J.: Stable and accurate artificial dissipation. J. Sci. Comput. 21(1), 57–79 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mattsson, K., Svärd, M., Shoeybi, M.: Stable and accurate schemes for the compressible Navier-Stokes equations. J. Comput. Phys. 227(4), 2293–2316 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nordström, J., Carpenter, M.H.: Boundary and interface conditions for high-order finite-difference methods applied to the Euler and Navier-Stokes equations. J. Comput. Phys. 148, 341–365 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nycander, J.: Tidal generation of internal waves from a periodic array of steep ridges. J. Fluid Mech. 567, 415–432 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shubin, G.R., Bell, J.B.: A modified equation approach to constructing fourth order methods for acoustic wave propagation. SIAM J. Sci. Stat. Comput. 8(2), 135–151 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. Svärd, M.: On coordinate transformation for summation-by-parts operators. J. Sci. Comput. 20(1), 29–42 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Svärd, M., Carpenter, M.H., Nordström, J.: A stable high-order finite difference scheme for the compressible Navier–Stokes equations, far-field boundary conditions. J. Comput. Phys. 225, 1020–1038 (2008)

    Article  Google Scholar 

  25. Svärd, M., Carpenter, M.H., Nordström, J.: A stable high-order finite difference scheme for the compressible Navier–Stokes equations, no-slip wall boundary conditions. J. Comput. Phys. 227, 4805–4824 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Svärd, M., Mattsson, K., Nordström, J.: Steady-state computations using summation-by-parts operators. J. Sci. Comput. 24(1), 79–95 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Svärd, M., Nordström, J.: On the order of accuracy for difference approximations of initial-boundary value problems. J. Comput. Phys. 218, 333–352 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Szilagyl, B., Kreiss, H.-O., Winicour, J.W.: Modeling the black hole excision problem. Phys. Rev. D, Part. Fields 71, 104035 (2005)

    Article  Google Scholar 

  29. Virieux, J.: Sh-wave propagation in heterogeneous media: Velocity-stress finite-difference method. Geophysics 49, 1933–1957 (1984)

    Article  Google Scholar 

  30. Virieux, J.: P-sv wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics 51, 889–901 (1986)

    Article  Google Scholar 

  31. Yee, K.S.: Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302–307 (1966)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Mattsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mattsson, K. Summation by Parts Operators for Finite Difference Approximations of Second-Derivatives with Variable Coefficients. J Sci Comput 51, 650–682 (2012). https://doi.org/10.1007/s10915-011-9525-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9525-z

Keywords

Navigation