Skip to main content
Log in

Commuting Smoothed Projectors in Weighted Norms with an Application to Axisymmetric Maxwell Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We construct finite element projectors that can be applied to functions with low regularity. These projectors are continuous in a weighted norm arising naturally when modeling devices with axial symmetry. They have important commuting diagram properties needed for finite element analysis. As an application, we use the projectors to prove quasioptimal convergence for the edge finite element approximation of the axisymmetric time-harmonic Maxwell equations on nonsmooth domains. Supplementary numerical investigations on convergence deterioration at high wavenumbers and near Maxwell eigenvalues and are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, D.N., Falk, R.S., Winther, R.: Multigrid in H(div) and H(curl). Numer. Math. 85, 197–217 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus: from Hodge theory to numerical stability. Bull., New Ser., Am. Math. Soc. 47, 281–353 (2010). doi:10.1090/S0273-0979-10-01278-4

    Article  MathSciNet  MATH  Google Scholar 

  3. Assous, F., Ciarlet, P. Jr., Labrunie, S.: Theoretical tools to solve the axisymmetric Maxwell equations. Math. Methods Appl. Sci. 25, 49–78 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Belhachmi, Z., Bernardi, C., Deparis, S.: Weighted Clement operator and application to the finite element discretization of the axisymmetric Stokes problem. Numer. Math. (2006). doi:10.1007/s00211-006-0039-9

    MathSciNet  Google Scholar 

  5. Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. Springer, New York (1976)

    Book  MATH  Google Scholar 

  6. Bernardi, C., Dauge, M., Maday, Y.: Spectral methods for axisymmetric domains. Series in Applied Mathematics (Paris), Gauthier-Villars, Éditions Scientifiques et Médicales Elsevier, vol. 3. Elsevier, Paris (1999). Numerical algorithms and tests due to Mejdi Azaïez

    MATH  Google Scholar 

  7. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods, vol. 15. Springer Series in Computational Mathematics. Springer, New York (1991)

    Book  MATH  Google Scholar 

  8. Christiansen, S.H., Winther, R.: Smoothed projections in finite element exterior calculus. Math. Comput. 77, 813–829 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Ciarlet, P.G.: Basic error estimates for elliptic problems. In: Ciarlet, P.G., Lions, J.-L. (eds.) Handbook of Numerical Analysis, vol. II, pp. 17–351. North-Holland, Amsterdam (1991). Finite element methods. Part 1

    Google Scholar 

  10. Clément, Ph.: Approximation by finite element functions using local regularization. RAIRO. Anal. Numér. R-2, 77–84 (1975) (9e année)

    Google Scholar 

  11. Copeland, D., Gopalakrishnan, J., Oh, M.: Multigrid in a weighted space arising from axisymmetric electromagnetics. Math. Comput. (2010)

  12. Copeland, D.M., Gopalakrishnan, J., Pasciak, J.E.: A mixed method for axisymmetric div-curl systems. Math. Comput. 77, 1941–1965 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Costabel, M.: A remark on the regularity of solutions of Maxwell’s equations on Lipschitz domains. Math. Methods Appl. Sci. 12, 365–368 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Costabel, M., Dauge, M.: Maxwell eigenmodes in tensor product domains. http://perso.univ-rennes1.fr/monique.dauge/publis/CoDa06MaxTens.pdf (2006)

  15. Gopalakrishnan, J., Pasciak, J.E.: Overlapping Schwarz preconditioners for indefinite time harmonic Maxwell equations. Math. Comput. 72, 1–15 (2003) (electronic)

    MathSciNet  MATH  Google Scholar 

  16. Gopalakrishnan, J., Pasciak, J.E.: The convergence of V-cycle multigrid algorithms for axisymmetric Laplace and Maxwell equations. Math. Comput. 75, 1697–1719 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gopalakrishnan, J., Pasciak, J.E., Demkowicz, L.F.: Analysis a multigrid algorithm for time harmonic Maxwell equations. SIAM J. Numer. Anal. 42, 90–108 (2004) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grisvard, P.: Elliptic Problems in Nonsmooth Domains, no. 24. In: Monographs and Studies in Mathematics. Pitman Advanced Publishing Program, Marshfield (1985)

    Google Scholar 

  19. Kufner, A.: Weighted Sobolev Spaces. Wiley, New York (1985). Translated from the Czech

    MATH  Google Scholar 

  20. Monk, P.: A finite element method for approximating the time-harmonic Maxwell equations. Numer. Math. 63, 243–261 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Monk, P.: Finite element methods for Maxwell’s equations. In: Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2003)

    Google Scholar 

  22. Monk, P.: A simple proof of convergence for an edge element discretization of Maxwell’s equations. In: Computational Electromagnetics (Kiel, 2001). Lect. Notes Comput. Sci. Eng., vol. 28, pp. 127–141. Springer, Berlin (2003)

    Google Scholar 

  23. Nédélec, J.-C.: Mixed finite elements in ℝ3. Numer. Math. 35, 315–341 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  24. Raviart, P.-A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. In: Mathematical Aspects of Finite Element Methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975). Lecture Notes in Math., vol. 606, pp. 292–315. Springer, Berlin (1977)

    Google Scholar 

  25. Schatz, A.H.: An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comput. 28, 959–962 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schöberl, J.: Commuting quasi-interpolation operators for mixed finite elements. Tech. Rep. ISC-01-10-MATH, Institute for Scientific Computation (ISC), Texas A&M University, College Station (2001)

  27. Schöberl, J.: A multilevel decomposition result in H(curl). In: Wesseling, P., Oosterlee, C., Hemker, P. (eds.) Proceedings of the 8th European Multigrid Conference, EMG 2005, TU Delft (2008)

    Google Scholar 

  28. Schöberl, J.: A posteriori error estimates for Maxwell equations. Math. Comput. 77, 633–649 (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Gopalakrishnan.

Additional information

This work was supported in part by the NSF under DMS-1014817. The authors also gratefully acknowledge the support from the IMA (Minneapolis) during their 2010-11 annual program.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gopalakrishnan, J., Oh, M. Commuting Smoothed Projectors in Weighted Norms with an Application to Axisymmetric Maxwell Equations. J Sci Comput 51, 394–420 (2012). https://doi.org/10.1007/s10915-011-9513-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9513-3

Keywords

Navigation