Skip to main content
Log in

Interaction of Waves with Frictional Interfaces Using Summation-by-Parts Difference Operators: Weak Enforcement of Nonlinear Boundary Conditions

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present a high-order difference method for problems in elastodynamics involving the interaction of waves with highly nonlinear frictional interfaces. We restrict our attention to two-dimensional antiplane problems involving deformation in only one direction. Jump conditions that relate tractions on the interface, or fault, to the relative sliding velocity across it are of a form closely related to those used in earthquake rupture models and other frictional sliding problems. By using summation-by-parts (SBP) finite difference operators and weak enforcement of boundary and interface conditions, a strictly stable method is developed. Furthermore, it is shown that unless the nonlinear interface conditions are formulated in terms of characteristic variables, as opposed to the physical variables in terms of which they are more naturally stated, the semi-discretized system of equations can become extremely stiff, preventing efficient solution using explicit time integrators.

The use of SBP operators also provides a rigorously defined energy balance for the discretized problem that, as the mesh is refined, approaches the exact energy balance in the continuous problem. This enables one to investigate earthquake energetics, for example the efficiency with which elastic strain energy released during rupture is converted to radiated energy carried by seismic waves, rather than dissipated by frictional sliding of the fault. These theoretical results are confirmed by several numerical tests in both one and two dimensions demonstrating the computational efficiency, the high-order convergence rate of the method, the benefits of using strictly stable numerical methods for long time integration, and the accuracy of the energy balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Appelo, D., Hagstrom, T., Kreiss, G.: Perfectly matched layers for hyperbolic systems: General formulation, well-posedness, and stability. SIAM J. Appl. Math. 67(1), 1–23 (2006). doi:10.1137/050639107

    Article  MathSciNet  Google Scholar 

  2. Carpenter, M.H., Gottlieb, D., Abarbanel, S.: Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: Methodology and application to high-order compact schemes. J. Comput. Phys. 111(2), 220–236 (1994). doi:10.1006/jcph.1994.1057

    Article  MATH  MathSciNet  Google Scholar 

  3. Carpenter, M.H., Nordström, J., Gottlieb, D.: A stable and conservative interface treatment of arbitrary spatial accuracy. J. Comput. Phys. 148(2), 341–365 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Carpenter, M.H., Kennedy, C.A.: Fourth-order 2N-storage Runge-Kutta schemes. Technical Report NASA TM-109112, National Aeronautics and Space Administration, Langley Research Center, Hampton, VA (1994)

  5. Dunham, E.M., Belanger, D., Cong, L., Kozdon, J.E.: Earthquake ruptures with strongly rate-weakening friction and off-fault plasticity: 1. Planar faults. Bull. Seism. Soc. Am. (in press). URL http://pangea.stanford.edu/~edunham/publications/Dunham_etal_flat-faults_BSSA11.pdf

  6. Freund, L.B.: Dynamic Fracture Mechanics, 1st edn. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  7. Gustafsson, B.: The convergence rate for difference approximations to mixed initial boundary value problems. Math. Comput. 29(130), 396–406 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gustafsson, B., Kreiss, H.-O., Oliger, J.: Time Dependent Problems and Difference Methods. Wiley-Interscience, New York (1996)

    Google Scholar 

  9. Hagstrom, T., Mar-Or, A., Givoli, D.: High-order local absorbing conditions for the wave equation: Extensions and improvements. J. Comput. Phys. 227(6), 3322–3357 (2008). doi:10.1016/j.jcp.2007.11.040

    Article  MATH  MathSciNet  Google Scholar 

  10. Kostrov, B.V.: Seismic moment and energy of earthquakes and seismic flow of rock. Izv. Earth Phys. 1, 23–40 (1974)

    MathSciNet  Google Scholar 

  11. Kreiss, H.-O.: Initial boundary value problems for hyperbolic systems. Commun. Pure Appl. Math. 23(3), 277–298 (1970). doi:10.1002/cpa.3160230304

    Article  MathSciNet  Google Scholar 

  12. Kreiss, H.-O., Scherer, G.: Finite element and finite difference methods for hyperbolic partial differential equations. In: Mathematical Aspects of Finite Elements in Partial Differential Equations; Proceedings of the Symposium, Madison, WI, pp. 195–212 (1974)

    Google Scholar 

  13. Kreiss, H.-O., Scherer, G.: On the existence of energy estimates for difference approximations for hyperbolic systems. Technical report, Dept. of Scientific Computing, Uppsala University (1977)

  14. Malvern, L.E.: Introduction to the Mechanics of a Continuous Medium, 1st edn. Prentice Hall, New York (1977)

    Google Scholar 

  15. Mattsson, K.: Boundary procedures for summation-by-parts operators. J. Sci. Comput. 18(1), 133–153 (2003). doi:10.1023/A:1020342429644

    Article  MATH  MathSciNet  Google Scholar 

  16. Mattsson, K., Nordström, J.: Summation by parts operators for finite difference approximations of second derivatives. J. Comput. Phys. 199(2), 503–540 (2004). doi:10.1016/j.jcp.2004.03.001

    Article  MATH  MathSciNet  Google Scholar 

  17. Mattsson, K., Ham, F., Iaccarino, G.: Stable boundary treatment for the wave equations in second-order form. J. Sci. Comput. 41(3), 366–383 (2009). doi:10.1007/s10915-009-9305-1

    Article  MATH  MathSciNet  Google Scholar 

  18. Nordström, J.: Conservative finite difference formulations, variable coefficients, energy estimates and artificial dissipation. J. Sci. Comput. 29(3), 375–404 (2006). doi:10.1007/s10915-005-9013-4

    Article  MATH  MathSciNet  Google Scholar 

  19. Nordström, J.: Error bounded schemes for time-dependent hyperbolic problems. SIAM J. Sci. Comput. 30(1), 46–59 (2007). doi:10.1137/060654943

    Article  MATH  MathSciNet  Google Scholar 

  20. Nordström, J., Carpenter, M.H.: High-order finite difference methods, multidimensional linear problems, and curvilinear coordinates. J. Comput. Phys. 173(1), 149–174 (2001). doi:10.1006/jcph.2001.6864

    Article  MATH  MathSciNet  Google Scholar 

  21. Nordström, J., Gustafsson, R.: High order finite difference approximations of electromagnetic wave propagation close to material discontinuities. J. Sci. Comput. 18, 215–234 (2003). doi:10.1023/A:1021149523112

    Article  MATH  Google Scholar 

  22. Nordström, J., Forsberg, K., Adamsson, C., Eliasson, P.: Finite volume methods, unstructured meshes and strict stability for hyperbolic problems. Appl. Numer. Math. 45(4), 453–473 (2003). doi:10.1016/S0168-9274(02)00239-8

    Article  MATH  MathSciNet  Google Scholar 

  23. Oliger, J., Sundstrom, A.: Theoretical and practical aspects of some initial boundary value problems in fluid dynamics. SIAM J. Appl. Math. 35(3), 419–446 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  24. Olsson, P.: Summation by parts, projections, and stability. II. Math. Comput. 64(212), 1473–1493 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  25. Rice, J.R., Lapusta, N., Ranjith, K.: Rate and state dependent friction and the stability of sliding between elastically deformable solids. J. Mech. Phys. Solids 49(9), 1865–1898 (2001). doi:10.1016/S0022-5096(01)00042-4

    Article  MATH  Google Scholar 

  26. Roache, P.J.: Verification and Validation in Computational Science and Engineering. Hermosa Publishers, Albuquerque (1998)

    Google Scholar 

  27. Rudnicki, J.W., Freund, L.B.: On energy radiation from seismic sources. Bull. Seismol. Soc. Am. 71(3), 583–595 (1981)

    Google Scholar 

  28. Strand, B.: Summation by parts for finite difference approximations for d/dx. J. Comput. Phys. 110(1), 47–67 (1994). doi:10.1006/jcph.1994.1005

    Article  MATH  MathSciNet  Google Scholar 

  29. Svärd, M., Nordström, J.: On the order of accuracy for difference approximations of initial-boundary value problems. J. Comput. Phys. 218(1), 333–352 (2007)

    Article  Google Scholar 

  30. Svärd, M., Carpenter, M.H., Nordström, J.: A stable high-order finite difference scheme for the compressible Navier-Stokes equations, far-field boundary conditions. J. Comput. Phys. 225(1), 1020–1038 (2007). doi:10.1016/j.jcp.2007.01.023

    Article  MATH  MathSciNet  Google Scholar 

  31. Thompson, K.W.: Time dependent boundary conditions for hyperbolic systems. J. Comput. Phys. 68(1), 1–24 (1987). doi:10.1016/0021-9991(87)90041-6

    Article  MATH  MathSciNet  Google Scholar 

  32. Thompson, K.W.: Time-dependent boundary conditions for hyperbolic systems, II. J. Comput. Phys. 89(2), 439–461 (1990). doi:10.1016/0021-9991(90)90152-Q

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy E. Kozdon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozdon, J.E., Dunham, E.M. & Nordström, J. Interaction of Waves with Frictional Interfaces Using Summation-by-Parts Difference Operators: Weak Enforcement of Nonlinear Boundary Conditions. J Sci Comput 50, 341–367 (2012). https://doi.org/10.1007/s10915-011-9485-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9485-3

Keywords

Navigation