Skip to main content
Log in

Multiple Level Sets for Piecewise Constant Surface Reconstruction in Highly Ill-Posed Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper considers highly ill-posed surface recovery inverse problems, where the sought surface in 2D or 3D is piecewise constant with several possible level values. These levels may further be potentially unknown. Multiple level set functions are used when there are more than two such levels, and we extend the methods and theory of our previous works to handle such more complex situations. A rather efficient method is developed. Inverse potential problems in two and three space dimensions are solved numerically, demonstrating the method’s capabilities for several both known and unknown level values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alessandrini, A., Vessella, S.: Lipschitz stability for the inverse conductivity problem. Adv. Appl. Math. 35, 207–241 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ascher, U., Haber, E., Huang, H.: On effective methods for implicit piecewise smooth surface recovery. SIAM J. Sci. Comput. 28, 339–358 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Berger, T., Hintringer, F., Fischer, G.: Noninvasive imaging of cardiac electrophysiology. Indian Pacing Electrophysiol. J. 7(3), 160–165 (2007)

    Google Scholar 

  4. Bertete-Aquirre, H., Cherkaev, E., Oristaglio, M.: Non-smooth gravity problem with total variation penalization functional. Geophys. J. Int. 149, 499–507 (2002)

    Article  Google Scholar 

  5. Burger, M.: A level set method for inverse problems. Inverse Probl. 17, 1327–1355 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Burger, M.: Levenberg-Marquardt level set methods for inverse obstacle problems. Inverse Probl. 20, 259–282 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chan, T., Tai, X.: Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients. J. Comput. Phys. 193, 40–66 (2003)

    Article  MathSciNet  Google Scholar 

  8. Chan, T., Vese, L.: A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vis. 50, 271–293 (2002)

    Article  MATH  Google Scholar 

  9. Cheney, M., Isaacson, D., Newell, J.C.: Electrical impedance tomography. SIAM Rev. 41, 85–101 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chung, E., Chan, T., Tai, X.: Electrical impedance tomography using level set representations and total variation regularization. J. Comput. Phys. 205, 357–372 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. DeCezaro, A., Leitão, A., Tai, X.-C.: On multiple level-set regularization methods for inverse problems. Inverse Probl. 25, 035004 (2009)

    Article  Google Scholar 

  12. Devaney, A.J.: The limited-view problem in diffraction tomography. Inverse Probl. 5, 510–523 (1989)

    Article  MathSciNet  Google Scholar 

  13. van den Doel, K., Ascher, U.: On level set regularization for highly ill-posed distributed parameter estimation problems. J. Comput. Phys. 216, 707–723 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. van den Doel, K., Ascher, U.: Dynamic level set regularization for large distributed parameter estimation problems. Inverse Probl. 23, 1271–1288 (2007)

    Article  MATH  Google Scholar 

  15. van den Doel, K., Ascher, U., Pai, D.: Computed myography: three dimensional reconstruction of motor functions from surface EMG data. Inverse Probl. 24, 1–17 (2008)

    Article  Google Scholar 

  16. van den Doel, K., Ascher, U.M., Curt, A., Steeves, J., Pai, D.K.: Computed myography: three dimensional reconstruction of motor functions from surface EMG data. In: Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, Canada, August 20–24, pp. 550–554 (2008)

  17. Dorn, O., Ascher, U.: Shape reconstruction in 3D electromagnetic induction tomography using a level set technique. In: Proc. 23rd International Review of Progress in Applied Computational Electromagnetics ACES, pp. 1–6 (2007)

  18. Dorn, O., Lesselier, D.: Level set methods for inverse scattering. Inverse Probl. 22, R67–R131 (2006). Topical Review

    Article  MATH  MathSciNet  Google Scholar 

  19. Dorn, O., Miller, E.L., Rappaport, C.M.: A shape reconstruction method for electromagnetic tomography using adjoint fields and level sets. Inverse Probl. 16, 1119–1156 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996)

    MATH  Google Scholar 

  21. Fruhauf, F., Scherzer, O., Leitão, A.: Analysis of regularization methods for the solution of ill-posed problems involving unbounded operators and a relation to constraint optimization. SIAM J. Numer. Anal. 43, 767–786 (2005)

    Article  MathSciNet  Google Scholar 

  22. Haber, E.: A multilevel, level-set method for optimizing eigenvalues in shape design problems. J. Comput. Phys. 198, 518–534 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Haber, E., Ascher, U., Aruliah, D., Oldenburg, D.: Fast simulation of 3D electromagnetic using potentials. J. Comput. Phys. 163, 150–171 (2000)

    Article  MATH  Google Scholar 

  24. Haber, E., Ascher, U., Oldenburg, D.: Inversion of 3D electromagnetic data in frequency and time domain using an inexact all-at-once approach. Geophysics 69, 1216–1228 (2004)

    Article  Google Scholar 

  25. Haber, E., Heldmann, S., Ascher, U.: Adaptive finite volume method for distributed non-smooth parameter identification. Inverse Probl. 23, 1659–1676 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hanke, M., Hansen, P.C.: Regularization methods for large scale problems. Surv. Math. Ind. 3, 253–315 (1993)

    MATH  MathSciNet  Google Scholar 

  27. Helmholtz, H.L.F.: Ueber einige Gesetze der Verheilung elektrischer Ströme in körperlicher Leitern mit Anwendung auf die thierisch-elektrischen Versuche. Ann. Phys. Chemie 9, 211–233 (1853)

    Article  Google Scholar 

  28. Hettlich, F., Rundell, W.: Iterative methods for the reconstruction of an inverse potential problem. Inverse Probl. 12, 251–266 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  29. Isakov, V.: Inverse Problems for Partial Differential Equations. Springer, Berlin (2006)

    MATH  Google Scholar 

  30. Kirkendall, B., Li, Y., Oldenburg, D.: Imaging cargo containers using gravity gradiometry. IEEE Trans. Geosci. Remote Sens. 45, 1786–1797 (2007)

    Article  Google Scholar 

  31. Leitão, A., Scherzer, O.: On the relation between constraint regularization, level sets, and shape optimization. Inverse Probl. 19, L1–L11 (2003)

    Article  MATH  Google Scholar 

  32. Michel, C.M., Murray, M.M., Lantz, G., Gonzalez, S., Spinelli, L., de Peralta, R.G.: EEG source imaging. Clin. Neurophysiol. 115, 2195–2222 (2004)

    Article  Google Scholar 

  33. Newman, G., Alumbaugh, D.: Three-dimensional massively parallel electromagnetic inversion–I, theory. Geophys. J. Int. 128, 345–354 (1997)

    Article  Google Scholar 

  34. Newman, G., Alumbaugh, D.: Three-dimensional massively parallel electromagnetic inversion–II, analysis of a crosswell electromagnetic experiment. Geophys. J. Int. 128, 355–367 (1997)

    Article  Google Scholar 

  35. Parker, R.L.: Geophysical Inverse Theory. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  36. Santosa, F.: A level-set approach for inverse problems involving obstacles. ESAIM Controle Optim. Calc. Var. 1, 17–33 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  37. Sapiro, G.: Geometric Partial Differential Equations and Image Analysis. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  38. Scherzer, O.: Convergence rates of iterated Tikhonov regularized solutions of nonlinear ill-posed problems. Numer. Math. 66, 259–279 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  39. Scherzer, O.: Scale-space methods and regularization for denoising and inverse problems. Adv. Image Electron Phys. 128, 445–530 (2003)

    Article  Google Scholar 

  40. Smith, N.C., Vozoff, K.: Two dimensional DC resistivity inversion for dipole dipole data. IEEE Trans. Geosci. Remote Sens. 22, 21–28 (1984)

    Article  Google Scholar 

  41. Tai, X.-C., Chan, T.: A survey on multiple level set methods with applications to identifying piecewise constant functions. Int. J. Numer. Anal. Model. 1, 25–47 (2004)

    MATH  MathSciNet  Google Scholar 

  42. Tai, X.-C., Li, H.: A piecewise constant level set method for elliptic inverse problems. Appl. Numer. Math. 57, 686–696 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  43. Tikhonov, A.N., Arsenin, V.Ya.: Methods for Solving Ill-Posed Problems. Wiley, New York (1977)

    Google Scholar 

  44. Vogel, C.: Computational Methods for Inverse Problem. SIAM, Philadelphia (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. van den Doel.

Additional information

K. van den Doel supported in part under NSERC Discovery Grant 84306; U.M. Ascher supported in part under NSERC Discovery Grant 84306; A. Leitão supported in part under CNPq grant 303098/2009-0 and by the Alexander von Humboldt Foundation AvH.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van den Doel, K., Ascher, U.M. & Leitão, A. Multiple Level Sets for Piecewise Constant Surface Reconstruction in Highly Ill-Posed Problems. J Sci Comput 43, 44–66 (2010). https://doi.org/10.1007/s10915-009-9341-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-009-9341-x

Navigation