Skip to main content
Log in

Higher-order Finite Elements for Hybrid Meshes Using New Nodal Pyramidal Elements

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We provide a comprehensive study of arbitrarily high-order finite elements defined on pyramids. We propose a new family of high-order nodal pyramidal finite element which can be used in hybrid meshes which include hexahedra, tetrahedra, wedges and pyramids. Finite elements matrices can be evaluated through approximate integration, and we show that the order of convergence of the method is conserved. Numerical results demonstrate the efficiency of hybrid meshes compared to pure tetrahedral meshes or hexahedral meshes obtained by splitting tetrahedra into hexahedra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babuska, I., Osborn, J.: Eigenvalue Problems. Handbook of Numerical Analysis, Vol. II. Finite Element Methods (Part 1) (1991)

  2. Bedrosian, G.: Shape functions and integration formulas for three-dimensional finite element analysis. Int. J. Numer. Methods Eng. 35, 95–108 (1992)

    Article  MATH  Google Scholar 

  3. Bluck, M.J., Walker, S.P.: Polynomial Basis Functions on Pyramidal Elements. Commun. Numer. Methods Eng. 24, 1827–1837 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Castel, N., Cohen, G., Duruflé, M.: Discontinuous Galerkin method for hexahedral elements and aeroacoustic. J. Comput. Acoust. 17(2), 175–196 (2009)

    Article  MathSciNet  Google Scholar 

  5. Castillo, P., Cockburn, B., Perugia, I., Schötzau, D.: An a-priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38(5), 1676–1706 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chatzi, V., Preparata, F.P.: Using Pyramids in Mixed Meshes-Point Placement and Basis Functions. Brown University, Providence (2000)

    Google Scholar 

  7. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  8. Clemens, M., Weiland, T.: Iterative methods for the solution of very large complex symmetric linear systems of equations in electrodynamics. Technische Hochschule Darmstadt, Fachbereich 18 Elektrische Nachrichtentechnik (2002)

  9. Cohen, G.C.: Higher-Order Numerical Methods for Transient Wave Equations. Springer, Berlin (2000)

    Google Scholar 

  10. Cohen, G.C., Fauqueux, S.: Mixed finite elements with mass-lumping for the transient wave equation. J. Comput. Acoust. 8, 171–188 (2000)

    MathSciNet  Google Scholar 

  11. Cohen, G.C., Ferrieres, X., Pernet, S.: A spatial high-order hexahedral discontinuous Galerkin method to solve Maxwell equations in time domain. J. Comput. Phys. 217(2), 340–363 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Demkowicz, L., Kurtz, J., Pardo, D., Paszynski, M., Rachowicz, W., Zdunek, A.: Computing with Hp-adaptive Finite Elements, vol. 2. Chapman and Hall, London (2007)

    MATH  Google Scholar 

  13. Duruflé, M.: Intégration numérique et éléments finis d’ordre élevé aliqués aux équations de Maxwell en régime harmonique. Thèse de doctorat, Université Paris IX-Dauphine (2006)

  14. Duruflé, M., Grob, P., Joly, P.: Influence of the Gauss and Gauss-Lobatto quadrature rules on the accuracy of a quadrilateral finite element method in the time domain. Numer. Methods Partial Differ. Equ. 25(3), 526–551 (2009)

    Article  MATH  Google Scholar 

  15. Erlangga, Y.A.: Some numerical aspects for solving sparse large linear systems derived from the Helmholtz equation. Report of Delft University Technology (2002)

  16. Girault, V., Raviart, P.A.: Finite Element Approximation of the Navier-Stokes Equations. Springer, Berlin (1979)

    Book  MATH  Google Scholar 

  17. Graglia, R.D., Wilton, D.R., Peterson, A.F., Gheorma, I.-L.: Higher order interpolatory vector bases on pyramidal elements. IEEE Trans. Antennas Propag. 47(5), 775–782 (1999)

    Article  Google Scholar 

  18. Hammer, P.C., Marlowe, O.J., Stroud, A.H.: Numerical integration over simplexes and cones. Math. Tables Other Aids Comput. 10(55), 130–137 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hesthaven, J.S.: From electrostatics to almost optimal nodal sets for polynomial interpolation in a simplex. SIAM J. Numer. Anal. 35(2), 665–676 (1998)

    Article  MathSciNet  Google Scholar 

  20. Hesthaven, J.S., Teng, C.H.: Stable spectral methods on tetrahedral elements. SIAM J. Numer. Anal. 21(6), 2352–2380 (2000)

    MATH  MathSciNet  Google Scholar 

  21. Karniadakis, G., Sherwin, S.J.: Spectral/hp Element Methods for CF, 2nd edn. Oxford University Press, London (2005)

    Google Scholar 

  22. Knabner, P., Summ, G.: The invertibility of the isoparametric maing for pyramidal and prismatic finite elements. Numer. Math. 88, 661–681 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. Liu, L., Davies, K.B., Yuan, K., Kříšek, M.: On symmetric pyramidal finite elements. Dyn. Contin. Discrete Impuls. Syst. Ser. B Al. Algorithms 11, 213–227 (2004)

    MATH  Google Scholar 

  24. Nigam, N., Phillips, J.: Higher-Order Finite Elements on Pyramids (2007)

  25. Pernet, S., Ferrieres, X.: Hp a-priori error estimates for a non-dissipative spectral discontinuous Galerkin method to solve the Maxwell equations in the time domain. Math. Comput. 76, 1801–1832 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Sherwin, S.J.: Hierarchical hp finite element in hybrid domains. Finite Elem. Anal. Des. 27, 109–119 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  27. Sherwin, S.J., Warburton, T., Karniadakis, G.E.: Spectral/hp methods for elliptic problems on hybrid grids. Contemp. Math. 218, 191–216 (1998)

    MathSciNet  Google Scholar 

  28. Šolín, P., Segeth, K., Dolezel, I.: Higher-order Finite Elements Methods. Studies in Advanced Mathematics. Chapman and Hall, London (2003)

    Google Scholar 

  29. Szabó, B.A., Babuška, I.: Finite Element Analysis. Wiley, New York (1991)

    MATH  Google Scholar 

  30. Warburton, T.: Spectral/hp Methods on Polymorphic Multi-domains: Algorithms and Applications. Brown University, Providence (1999)

    Google Scholar 

  31. Wieners, C.: Conforming discretizations on tetrahedrons, pyramids, prisms and hexahedrons (1997)

  32. Zaglmayr, S.: High Order Finite Elements for Electromagnetic Field Computation. Ph.D. Thesis, Johannes Kepler University, Linz Austria (2006)

  33. Zgainski, F.X., Coulomb, J.C., Maréchal, Y., Claeyssen, F., Brunotte, X.: A new family of finite elements: the pyramidal elements. IEEE Trans. Magn. 32(3), 1393–1396 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morgane Bergot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergot, M., Cohen, G. & Duruflé, M. Higher-order Finite Elements for Hybrid Meshes Using New Nodal Pyramidal Elements. J Sci Comput 42, 345–381 (2010). https://doi.org/10.1007/s10915-009-9334-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-009-9334-9

Navigation