Skip to main content
Log in

Stable Interface Conditions for Discontinuous Galerkin Approximations of Navier-Stokes Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A study of boundary and interface conditions for Discontinuous Galerkin approximations of fluid flow equations is undertaken in this paper. While the interface flux for the inviscid case is usually computed by approximate Riemann solvers, most discretizations of the Navier-Stokes equations use an average of the viscous fluxes from neighboring elements. The paper presents a methodology for constructing a set of stable boundary/interface conditions that can be thought of as “viscous” Riemann solvers and are compatible with the inviscid limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abarbanel, S., Gottlieb, D.: Optimal time splitting for two- and three-dimensional Navier-Stokes equations with mixed derivatives. J. Comput. Phys. 41, 1–33 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bassi, F., Rebay, S.: High-order accurate discontinuous Galerkin method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131, 251–285 (1997)

    Article  Google Scholar 

  3. Cheng, Y., Shu, C.-W.: A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput. 77, 699–730 (2008)

    MATH  MathSciNet  Google Scholar 

  4. Cockburn, B., Hou, S., Shu, C.-W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case. Math. Comput. 54, 545–581 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework. Math. Comput. 52, 411–435 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dutt, P.: Stable boundary conditions and difference schemes for Navier-Stokes equations. SIAM J. Numer. Anal. 25, 245–267 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  9. Friedrichs, K.O., Lax, P.D.: Systems of conservation equations with a convex extension. Proc. Acad. Sci. USA 68, 1686–1688 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gassner, G., Lörcher, F., Munz, C.-D.: A contribution to the construction of diffusion fluxes for finite volume and discontinuous Galerkin schemes. J. Comput. Phys. 224, 1049–1063 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability preserving high-order time discretization methods, ICASE Report No. 2000-15, NASA Langley, VA

  12. Gustaffson, B., Sundstörm, A.: Incompletely parabolic problems in fluid dynamics. SIAM J. Appl. Math. 35, 343–357 (1978)

    Article  MathSciNet  Google Scholar 

  13. Halpern, L.: Artificial boundary conditions for incompletely parabolic perturbations of hyperbolic systems. SIAM J. Appl. Anal. 22, 1256–1283 (1991)

    Article  MATH  Google Scholar 

  14. Hartmann, R., Houston, P.: Symmetric interior penalty DG methods for the compressible Navier-Stokes equations I: Method formulation. Int. J. Numer. Anal. Model 3(1), 1–20 (2005)

    MATH  MathSciNet  Google Scholar 

  15. Hesthaven, J.S., Gottlieb, D.: A stable penalty method for the compressible Navier-Stokes equations: I. Open boundary conditions. SIAM J. Sci. Comput. 17(3), 579–612 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hirsch, C.: Numerical Computation of Internal and External Flows, vol. 2, pp. 132–223. Wiley–Interscience, New York (1990)

    MATH  Google Scholar 

  17. Kutluay, S., Esen, A., Dag, I.: Numerical solutions of the Burgers’ equation by the least-squares quadratic B-spline finite element method. J. Comput. Appl. Math. 167(1), 21–33 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Nair, R.D., Thomas, S.J., Loft, R.D.: A discontinuous Galerkin transport scheme on the Cubed-Sphere. Mon. Weather Rev. 133, 814–828 (2004)

    Article  Google Scholar 

  19. Nordstrom, J.: The use of characteristic boundary conditions for the Navier-Stokes equations. Comput. Fluids 24, 609–623 (1995)

    Article  MathSciNet  Google Scholar 

  20. Oliger, J., Sundström, A.: Theoretical and practical aspects of some initial boundary value problems in fluid dynamics. SIAM J. Appl. Anal. 35, 419–446 (1978)

    Article  MATH  Google Scholar 

  21. Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973)

  22. Shu, C.-W.: Different formulations of the Discontinuous Galerkin Method for the viscous terms. In: Shi, Z.-C., Mu, M., Xue, W., Zou, J. (eds.) Advances in Scientific Computing, pp. 144–155. Science Press, Beijing (2001)

    Google Scholar 

  23. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  24. Stanescu, D., Hussaini, M.Y., Farassat, F.: Aircraft engine noise scattering by fuselage and wings: A computational approach. J. Sound Vib. 263, 319–333 (2003)

    Article  Google Scholar 

  25. Turkel, E.: Symmetrization of the fluid dynamic matrices with applications. Math. Comput. 27(124), 729–736 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  26. Warming, R.F., Beam, R.M., Hyett, B.J.: Diagonalization and simultaneous symmetrization of the gas-dynamic matrices. Math. Comput. 29(132), 1037–1045 (1975)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Stanescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahunanthan, A., Stanescu, D. Stable Interface Conditions for Discontinuous Galerkin Approximations of Navier-Stokes Equations. J Sci Comput 41, 118–138 (2009). https://doi.org/10.1007/s10915-009-9290-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-009-9290-4

Keywords

Navigation