Skip to main content
Log in

Fully Discrete Analysis of a Discontinuous Finite Element Method for the Keller-Segel Chemotaxis Model

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper formulates and analyzes fully discrete schemes for the two-dimensional Keller-Segel chemotaxis model. The spatial discretization of the model is based on the discontinuous Galerkin methods and the temporal discretization is based either on Forward Euler or the second order explicit total variation diminishing (TVD) Runge-Kutta methods. We consider Cartesian grids and prove fully discrete error estimates for the proposed methods. Our proof is valid for pre-blow-up times since we assume boundedness of the exact solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, J.: Chemotaxis in bacteria. Ann. Rev. Biochem. 44, 341–356 (1975)

    Article  Google Scholar 

  2. Agmon, S.: Lectures on Elliptic Boundary Value Problems. Van Nostrand, Princeton (1965)

    MATH  Google Scholar 

  3. Arnold, D.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  4. Babuška, I., Suri, M.: The hp version of the finite element method with quasiuniform meshes. RAIRO Modél. Math. Anal. Numér. 21, 199–238 (1987)

    MATH  Google Scholar 

  5. Babuška, I., Suri, M.: The optimal convergence rates of the p-version of the finite element method. SIAM J. Numer. Anal. 24, 750–776 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bonner, J.: The Cellular Slime Molds, 2nd edn. Princeton University Press, Princeton (1967)

    Google Scholar 

  7. Brenner, S.: Poincaré-Friedrichs inequalities for piecewise h 1 functions. SIAM J. Numer. Anal. 41, 306–324 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Budrene, E., Berg, H.: Complex patterns formed by motile cells of Escherichia coli. Nature 349, 630–633 (1991)

    Article  Google Scholar 

  9. Budrene, E., Berg, H.: Dynamics of formation of symmetrical patterns by chemotactic bacteria. Nature 376, 49–53 (1995)

    Article  Google Scholar 

  10. Chertock, A., Kurganov, A.: A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models. Numer. Math. 111, 169–205 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Childress, S., Percus, J.: Nonlinear aspects of chemotaxis. Math. Biosci. 56, 217–237 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cockburn, B., Shu, C.-W.: , The local discontinuous Galerkin method for convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cockburn, B., Karniadakis, G., Shu, C.-W. (eds.): First International Symposium on Discontinuous Galerkin Methods. Lecture Notes in Computational Science and Engineering, vol. 11. Springer, Berlin (2000)

    Google Scholar 

  14. Cockburn, B., Kanschat, G., Schotzau, D.: A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations. J. Sci. Comput. 31, 61–73 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Cohen, M., Robertson, A.: Wave propagation in the early stages of aggregation of cellular slime molds. J. Theor. Biol. 31, 101–118 (1971)

    Article  Google Scholar 

  16. Douglas, J., Dupont, T.: Lecture Notes in Physics, vol. 58. Springer, Berlin (1976). Chap. Interior penalty procedures for elliptic and parabolic Galerkin methods

    Google Scholar 

  17. Epshteyn, Y.: Discontinuous Galerkin methods for the chemotaxis and haptotaxis models. J. Comput. Appl. Math. 224, 168–181 (2008)

    Article  MathSciNet  Google Scholar 

  18. Epshteyn, Y., Izmirlioglu, A.: Fully discrete analysis of a discontinuous finite element method for the Keller-Segel Chemotaxis model. CNA Report 08-CNA-026. http://www.andrew.cmu.edu/user/rina10/chemotdiscrevcna.pdf (2008)

  19. Epshteyn, Y., Kurganov, A.: New interior penalty discontinuous Galerkin methods for the Keller-Segel chemotaxis model. SIAM J. Numer. Anal. 47, 386–408 (2008). CNA Report. http://www.math.cmu.edu/cna/pub2007.html

    Article  MathSciNet  Google Scholar 

  20. Epshteyn, Y., Rivière, B.: On the solution of incompressible two-phase flow by a p-version discontinuous Galerkin method. Commun. Numer. Methods Eng. 22, 741–751 (2006)

    Article  MATH  Google Scholar 

  21. Epshteyn, Y., Rivière, B.: Convergence of high order methods for miscible displacement. Int. J. Numer. Anal. Model. 5(Supp), 47–63 (2008)

    MATH  MathSciNet  Google Scholar 

  22. Filbet, F.: A finite volume scheme for the Patlak-Keller-Segel chemotaxis model. Numer. Math. 104, 457–488 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Girault, V., Rivière, B., Wheeler, M.: A discontinuous Galerkin method with non-overlapping domain decomposition for the Stokes and Navier-Stokes problems. Math. Comput. 74, 53–84 (2005)

    MATH  Google Scholar 

  24. Herrero, M., Velázquez, J.: A blow-up mechanism for a chemotaxis model. Ann. Sc. Norm. Super. 24, 633–683 (1997)

    MATH  Google Scholar 

  25. Horstmann, D.: From 1970 until now: The Keller-Segel model in chemotaxis and its consequences i. Jahresber. Dtsch. Math.-Ver. 105, 103–165 (2003)

    MATH  MathSciNet  Google Scholar 

  26. Horstmann, D.: From 1970 until now: The Keller-Segel model in chemotaxis and its consequences ii. Jahresber. Dtsch. Math.-Ver. 106, 51–69 (2004)

    MATH  MathSciNet  Google Scholar 

  27. Keller, E., Segel, L.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  Google Scholar 

  28. Keller, E., Segel, L.: Model for chemotaxis. J. Theor. Biol. 30, 225–234 (1971)

    Article  Google Scholar 

  29. Keller, E., Segel, L.: Traveling bands of chemotactic bacteria: A theoretical analysis. J. Theor. Biol. 30, 235–248 (1971)

    Article  Google Scholar 

  30. Kurganov, A., Lin, C.-T.: On the reduction of numerical dissipation in central-upwind schemes. Commun. Comput. Phys. 2, 141–163 (2007)

    MATH  MathSciNet  Google Scholar 

  31. Kurganov, A., Petrova, G.: Central-upwind schemes on triangular grids for hyperbolic systems of conservation laws. Numer. Methods Partial Differ. Equ. 21, 536–552 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  32. Kurganov, A., Noelle, S., Petrova, G.: Semi-discrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput. 23, 707–740 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  33. Marrocco, A.: 2d simulation of chemotaxis bacteria aggregation. Math. Model. Numer. Anal. 37, 617–630 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  34. Nanjundiah, V.: Chemotaxis, signal relaying and aggregation morphology. J. Theor. Biol. 42, 63–105 (1973)

    Article  Google Scholar 

  35. Patlak, C.: Random walk with persistence and external bias. Bull. Math. Biophys. 15, 311–338 (1953)

    Article  MathSciNet  Google Scholar 

  36. Prescott, L., Harley, J., Klein, D.: Microbiology, 3rd edn. Brown, Chicago (1996)

    Google Scholar 

  37. Rivière, B., Wheeler, M., Girault, V.: A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39, 902–931 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  38. Schwab, C.: p- and hp-Finite Element Methods. Numerical Mathematics and Scientific Computation. Oxford University Press, London (1998)

    MATH  Google Scholar 

  39. Sun, S., Wheeler, M.: Symmetric and nonsymmetric discontinuous Galerkin methods for reactive transport in porous media. SIAM J. Numer. Anal. 43, 195–219 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  40. Tyson, R., Lubkin, S., Murray, J.: A minimal mechanism for bacterial pattern formation. Proc. R. Soc. Lond. B 266, 299–304 (1999)

    Article  Google Scholar 

  41. Tyson, R., Stern, L., LeVeque, R.: Fractional step methods applied to a chemotaxis model. J. Math. Biol. 41, 455–475 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  42. Zhang, Q., Shu, C.-W.: Error estimates to smooth solutions of Runge–Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42, 641–666 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yekaterina Epshteyn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Epshteyn, Y., Izmirlioglu, A. Fully Discrete Analysis of a Discontinuous Finite Element Method for the Keller-Segel Chemotaxis Model. J Sci Comput 40, 211–256 (2009). https://doi.org/10.1007/s10915-009-9281-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-009-9281-5

Keywords

Navigation