Skip to main content
Log in

Computation of Dendritic Growth with Level Set Model Using a Multi-Mesh Adaptive Finite Element Method

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose an efficient multi-mesh h-adaptive algorithm to solve the level set model of dendritic growth. Since the level set function is used to provide implicitly the location of the phase interface, it is resolved by an h-adaptive mesh with refinement only around the phase interface, while the thermal field is approximated on another h-adaptive mesh. The proposed method not only can enjoy the merits of the level set function to handle complex evolution of the free boundary, but also can achieve the similar accuracy as the front tracking method for the sharp interface model with about the same degrees of freedom. The algorithm is applied to the simulation of the dendritic crystallization in a pure undercooled melt. The accuracy is verified by comparing the computational dendrite tip velocity with solvability theory. Numerical simulations, both in 2D and 3D cases, are presented to demonstrate its capacity and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brezina, M., : Algebraic multigrid based on element interpolation (amge). SIAM J. Sci. Comput. 22(5), 1570–1592 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cleary, A.J., : Robustness and scalability of algebraic multigrid. SIAM J. Sci. Comput. 21(5), 1886–1908 (1999)

    Article  MathSciNet  Google Scholar 

  3. Gibou, F., Fedkiw, R., Caflisch, R., Osher, S.: A level set approach for the numerical simulation of dendritic growth. J. Sci. Comput. 19, 183–199 (2003). Special issue in honor of the sixtieth birthday of Stanley Osher

    Article  MATH  MathSciNet  Google Scholar 

  4. Glicksman, M.E., Marsh, S.P.: The dendrite. In: Handbook of Crystal Growth, vol. 1. North Holland, Amsterdam (1993)

    Google Scholar 

  5. Herrmann, M.: A balanced force refined level set grid method for two-phase flows on unstructured flow solver grids. J. Comput. Phys. 227, 2674–2706 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Juric, D., Tryggvason, G.: A front-tracking method for dendritic solidification. J. Comput. Phys. 123, 127 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Karma, A., Rappel, W.J.: Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics. Phys. Rev. E 53(4), R3017–R3020 (1996)

    Article  Google Scholar 

  8. Karma, A., Rappel, W.J.: Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys. Rev. E 57(4), 4323–4349 (1998)

    Article  MATH  Google Scholar 

  9. Kim, Y.T., Goldenfeld, N., Dantzig, J.: Computation of dendritic microstructures using a level set method. Phys. Rev. E 62, 2471–2474 (2000)

    Article  Google Scholar 

  10. Kurz, W., Fisher, D.J.: Fundamentals of Solidification. Trans. Tech. Publications Ltd., Aedermannsdorf (1989)

    Google Scholar 

  11. Langer, J.S.: Lectures on the theory of pattern formation. In: Souletie, J., Vannimenus, J., Stora, R. (eds.) Chance and Matter, pp. 629–711. North-Holland, Amsterdam (1987). Chapter Session XLVI

    Google Scholar 

  12. Li, R.: On multi-mesh h-adaptive algorithm. J. Sci. Comput. 24(3), 321–341 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Li, R., Liu, W.B.: http://circus.math.pku.edu.cn/AFEPack

  14. Osher, S., Sethian, J.: Front propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulation. J. Comput. Phys. 79, 12 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Provatas, N., Goldenfeld, N., Dantzig, J.: Efficient computation of dendritic microstructures using adaptive mesh refinement. Phys. Rev. Lett. 80, 3308–3311 (1998)

    Article  Google Scholar 

  16. Provatas, N., Goldenfeld, N., Dantzig, J.: Adaptive mesh refinement of solidification microstructures using dynamic data structures. J. Comput. Phys. 148, 265–290 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rannachor, R.: h-refine strategy: fix threshold method. J. Sci. Comput. 20, 320 (1998)

    Google Scholar 

  18. Schmidt, A.: Computation of three dimensional dendrites with finite elements. J. Comput. Phys. 125, 293–312 (1996)

    Article  MATH  Google Scholar 

  19. Sussmann, M., Smereka, P., Osher, S.J.: A level set method for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114, 146–159 (1994)

    Article  Google Scholar 

  20. Verfürth, R.: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley, New York (1996)

    MATH  Google Scholar 

  21. Wang, H.-Y., Li, R., Tang, T.: An efficient r-adaptive finite element methods for phase field model of dendritic growth. J. Comput. Phys. 227, 5984–6000 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Zienkiewicz, O.C., Zhu, J.Z.: Posteriori. Int. J. Numer. Methods Eng. 24, 337 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruo Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di, Y., Li, R. Computation of Dendritic Growth with Level Set Model Using a Multi-Mesh Adaptive Finite Element Method. J Sci Comput 39, 441–453 (2009). https://doi.org/10.1007/s10915-009-9275-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-009-9275-3

Keywords

Navigation