Skip to main content
Log in

A Numerical Study of Diagonally Split Runge–Kutta Methods for PDEs with Discontinuities

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Diagonally split Runge–Kutta (DSRK) time discretization methods are a class of implicit time-stepping schemes which offer both high-order convergence and a form of nonlinear stability known as unconditional contractivity. This combination is not possible within the classes of Runge–Kutta or linear multistep methods and therefore appears promising for the strong stability preserving (SSP) time-stepping community which is generally concerned with computing oscillation-free numerical solutions of PDEs. Using a variety of numerical test problems, we show that although second- and third-order unconditionally contractive DSRK methods do preserve the strong stability property for all time step-sizes, they suffer from order reduction at large step-sizes. Indeed, for time-steps larger than those typically chosen for explicit methods, these DSRK methods behave like first-order implicit methods. This is unfortunate, because it is precisely to allow a large time-step that we choose to use implicit methods. These results suggest that unconditionally contractive DSRK methods are limited in usefulness as they are unable to compete with either the first-order backward Euler method for large step-sizes or with Crank–Nicolson or high-order explicit SSP Runge–Kutta methods for smaller step-sizes.

We also present stage order conditions for DSRK methods and show that the observed order reduction is associated with the necessarily low stage order of the unconditionally contractive DSRK methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellen, A., Torelli, L.: Unconditional contractivity in the maximum norm of diagonally split Runge–Kutta methods. SIAM J. Numer. Anal. 34(2), 528–543 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bellen, A., Jackiewicz, Z., Zennaro, M.: Contractivity of waveform relaxation Runge–Kutta iterations and related limit methods for dissipative systems in the maximum norm. SIAM J. Numer. Anal. 31(2), 499–523 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81(3), 637–654 (1973)

    Article  Google Scholar 

  4. Butcher, J.C.: General linear methods. Acta Numer. 15, 157–256 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Coleman, T.: Option pricing: the hazards of computing delta and gamma. Website, http://www.fenews.com/fen49/where_num_matters/numerics.htm (2006)

  6. Ferracina, L., Spijker, M.N.: Stepsize restrictions for the total-variation-diminishing property in general Runge–Kutta methods. SIAM J. Numer. Anal. 42(3), 1073–1093 (2004) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ferracina, L., Spijker, M.N.: An extension and analysis of the Shu–Osher representation of Runge–Kutta methods. Math. Comput. 74(249), 201–219 (2005) (electronic)

    MATH  MathSciNet  Google Scholar 

  8. Ferracina, L., Spijker, M.N.: Strong stability of singly-diagonally-implicit Runge–Kutta methods. Appl. Numer. Math. (2007). doi: 10.1016/j.apnum.2007.10.004

    Google Scholar 

  9. Forsyth, P.A.: An introduction to computational finance without agonizing pain. Available on author’s website, http://www.cs.uwaterloo.ca/~paforsyt/agon.pdf, February 2005

  10. Giles, M.B., Carter, R.: Convergence analysis of Crank–Nicolson and Rannacher time-marching. J. Comput. Financ. 9(4), 89–112 (2006)

    Google Scholar 

  11. Gottlieb, S.: On high order strong stability preserving Runge–Kutta and multi step time discretizations. J. Sci. Comput. 25(1-2), 105–128 (2005)

    Article  MathSciNet  Google Scholar 

  12. Gottlieb, S., Shu, C.-W.: Total variation diminishing Runge–Kutta schemes. Math. Comput. 67(221), 73–85 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer Series in Computational Mathematics, vol. 14. Springer, Berlin (1991)

    MATH  Google Scholar 

  15. Higueras, I.: On strong stability preserving time discretization methods. J. Sci. Comput. 21(2), 193–223 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Higueras, I.: Representations of Runge–Kutta methods and strong stability preserving methods. SIAM J. Numer. Anal. 43(3), 924–948 (2005) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  17. Horváth, Z.: Positivity of Runge–Kutta and diagonally split Runge–Kutta methods. Appl. Numer. Math. 28(2–4), 309–326 (1998). Eighth Conference on the Numerical Treatment of Differential Equations (Alexisbad, 1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hundsdorfer, W., Ruuth, S.J.: On monotonicity and boundedness properties of linear multistep methods. Math. Comput. 75(254), 655–672 (2006) (electronic)

    MATH  MathSciNet  Google Scholar 

  19. Hundsdorfer, W., Ruuth, S.J., Spiteri, R.J.: Monotonicity-preserving linear multistep methods. SIAM J. Numer. Anal. 41(2), 605–623 (2003) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  20. in ’t Hout, K.J.: A note on unconditional maximum norm contractivity of diagonally split Runge–Kutta methods. SIAM J. Numer. Anal. 33(3), 1125–1134 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ketcheson, D.I., Macdonald, C.B., Gottlieb, S.: Optimal implicit strong stability preserving Runge–Kutta methods (2007, submitted)

  22. Kraaijevanger, J.F.B.M.: Contractivity of Runge–Kutta methods. BIT 31(3), 482–528 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  23. Layton, A.T., Minion, M.L.: Implications of the choice of quadrature nodes for Picard integral deferred corrections methods for ordinary differential equations. BIT 45(2), 341–373 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lenferink, H.W.J.: Contractivity preserving explicit linear multistep methods. Numer. Math. 55(2), 213–223 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lenferink, H.W.J.: Contractivity-preserving implicit linear multistep methods. Math. Comput. 56(193), 177–199 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  26. Macdonald, C.B.: Constructing high-order Runge–Kutta methods with embedded strong-stability-preserving pairs. Master’s Thesis, Simon Fraser University, August 2003

  27. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Applied Mathematical Sciences, vol. 153. Springer, New York (2003)

    MATH  Google Scholar 

  28. Prothero, A., Robinson, A.: On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations. Math. Comput. 28, 145–162 (1974)

    Article  MathSciNet  Google Scholar 

  29. Ruuth, S.J.: Global optimization of explicit strong-stability-preserving Runge–Kutta methods. Math. Comput. 75(253), 183–207 (2006) (electronic)

    MATH  MathSciNet  Google Scholar 

  30. Ruuth, S.J., Spiteri, R.J.: Two barriers on strong-stability-preserving time discretization methods. J. Sci. Comput. 17(1–4), 211–220 (2002). Proceedings of the Fifth International Conference on Spectral and High Order Methods (ICOSAHOM-01) (Uppsala)

    Article  MATH  MathSciNet  Google Scholar 

  31. Sahinidis, N.V., Tawarmalani, M.: BARON 7.2: Global Optimization of Mixed-Integer Nonlinear Programs. User’s Manual (2004). Available at http://www.gams.com/dd/docs/solvers/baron.pdf

  32. Shu, C.-W.: Total-variation-diminishing time discretizations. SIAM J. Sci. Statist. Comput. 9(6), 1073–1084 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  33. Shu, C.-W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  34. Spijker, M.N.: Contractivity in the numerical solution of initial value problems. Numer. Math. 42(3), 271–290 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  35. Spijker, M.N.: Stepsize conditions for general monotonicity in numerical initial value problems. SIAM J. Numer. Anal. 45(3), 1226–1245 (2007) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  36. Spiteri, R.J., Ruuth, S.J.: A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM J. Numer. Anal. 40(2), 469–491 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  37. Spiteri, R.J., Ruuth, S.J.: Non-linear evolution using optimal fourth-order strong-stability-preserving Runge–Kutta methods. Math. Comput. Simulation 62(1–2), 125–135 (2003). Nonlinear Waves: Computation and Theory, II (Athens, GA, 2001)

    Article  MATH  MathSciNet  Google Scholar 

  38. Zennaro, M.: Contractivity of Runge–Kutta methods with respect to forcing terms. Appl. Numer. Math. 11(4), 321–345 (1993)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin B. Macdonald.

Additional information

The work of C.B. Macdonald was partially supported by an NSERC Canada PGS-D scholarship, a grant from NSERC Canada, and a scholarship from the Pacific Institute for the Mathematical Sciences (PIMS).

The work of S. Gottlieb was supported by AFOSR grant number FA9550-06-1-0255.

The work of S.J. Ruuth was partially supported by a grant from NSERC Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macdonald, C.B., Gottlieb, S. & Ruuth, S.J. A Numerical Study of Diagonally Split Runge–Kutta Methods for PDEs with Discontinuities. J Sci Comput 36, 89–112 (2008). https://doi.org/10.1007/s10915-007-9180-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-007-9180-6

Keywords

Navigation