Skip to main content
Log in

The Construction of Discretely Conservative Finite Volume Schemes that Also Globally Conserve Energy or Entropy

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This work revisits an idea that dates back to the early days of scientific computing, the energy method for stability analysis. It is shown that if the scalar non-linear conservation law

$$\frac{\partial u}{\partial t}+\frac{\partial}{\partial x}f(u)=0$$

is approximated by the semi-discrete conservative scheme

$$\frac{du_{j}}{dt}+\frac{1}{\Delta x}\left(f_{j+\frac{1}{2}}-f_{j-\frac{1}{2}}\right)=0$$

then the energy of the discrete solution evolves at exactly the same rate as the energy of the true solution, provided that the numerical flux is evaluated by the formula

$$f_{j+\frac{1}{2}}=\int_{0}^{1}f(\hat{u})d\theta,$$

where

$$\hat{u}(\theta)=u_{j}+\theta(u_{j+1}-u_{j}).$$

With careful treatment of the boundary conditions, this provides a path to the construction of non-dissipative stable discretizations of the governing equations. If shock waves appear in the solution, the discretization must be augmented by appropriate shock operators to account for the dissipation of energy by the shock waves. These results are extended to systems of conservation laws, including the equations of incompressible flow, and gas dynamics. In the case of viscous flow, it is also shown that shock waves can be fully resolved by non-dissipative discretizations of this type with a fine enough mesh, such that the cell Reynolds number ≤2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Richtmyer, R.D., Morton, K.W.: Difference Methods for Initial Value Problems. Interscience, New York (1967)

    MATH  Google Scholar 

  2. Honein, A.E., Moin, P.: Higher entropy conservation and numerical stability of compressible turbulence simulations. J. Comput. Phys. 201, 531–545 (2004)

    Article  MATH  Google Scholar 

  3. Lax, P.D., Wendroff, B.: Systems of conservation laws. Commun. Pure. Appl. Math. 13, 217–137 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  4. Gustafsson, B., Olsson, P.: High-order centered difference schemes with sharp shock resolution. J. Sci. Comput. 11, 229–260 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Godunov, S.K.: A difference method for the numerical calculation of discontinous solutions of hydrodynamic equations. Math. Sb. 47, 271–306 (1959)

    MathSciNet  Google Scholar 

  6. Boris, J.P., Book, D.L.: Flux corrected transport, SHASTA, a fluid transport algorithm that works. J. Comput. Phys. 11, 38–69 (1973)

    Article  Google Scholar 

  7. Van Leer, B.: Towards the ultimate conservative difference scheme, II, monotonicity and conservation combined in a second order scheme. J. Comput. Phys. 14, 361–370 (1974)

    Article  Google Scholar 

  8. Roe, P.L.: Approximate Riemann solvers, parameter vectors and difference scheme. J. Comput. Phys. 43, 357–372 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  9. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–393 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  10. Liou, M.S., Steffen, C.J.: A new flux splitting scheme. J. Comput. Phys. 107, 22–39 (1993)

    Article  MathSciNet  Google Scholar 

  11. Jameson, A.: Analysis and design of numerical schemes for gas dynamics 1. Artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence. Int. J. Comput. Fluid Dyn. 4, 171–218 (1995)

    Article  Google Scholar 

  12. Jameson, A.: Analysis and design of numerical schemes for gas dynamics 2. Artificial diffusion and discrete shock structure. Int. J. Comput. Fluid Dyn. 5, 1–38 (1995)

    Article  Google Scholar 

  13. Godunov, S.K.: An interesting class of quasilinear systems. Dokl. Akad. Nauk USSR 139, 521 (1961)

    MathSciNet  Google Scholar 

  14. Mock, M.S.: Systems of conservation laws of mixed type. J. Differ. Equ. 37 (1980)

  15. Harten, A.: On the symmetric form of systems of conservation laws with entropy. J. Comput. Phys. 49, 151–164 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  16. Mattsson, K.: Boundary operators for summation-by-parts operators. J. Sci. Comput. 18, 133–153 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Shu, C.W.: Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput. 9, 1073–1084 (1988)

    Article  MATH  Google Scholar 

  18. Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. (2006)

  19. Jameson, A., Baker, T.J., Weatherill, N.P.: Calculation of inviscid transonic flow over a complete aircraft. AIAA Paper 86-0103, AIAA 24th Aerospace Sciences Meeting, Reno, January 1986

  20. Ham, F., Mattsson, K., Iaccarino, G., Moin, P.: Towards time-stable and accurate les on unstructured grids. In: Complex Effects in Large Eddy Simulation, Limassol, September 2005

  21. Hughes, T.J., Franca, L.P., Mallet, M.: A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier Stokes equations and the second law of thermodynamics. Comput. Methods Appl. Mech. Eng. 54, 223–234 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gerritsen, M., Olsson, P.: Designing an efficient solution strategy for fluid flows. J. Comput. Phys. 129, 245–262 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  23. Yee, H.C., Vinokur, M., Djomehri, M.J.: Entropy splitting and numerical dissipation. J. Comput. Phys. 162, 33–81 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. MacCormack, R.W., Paullay, A.J.: The influence of the computational mesh on accuracy for initial value problems with discontinuous or non-unique solutions. Comput. Fluids 2, 339–361 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  25. Jameson, A., Schmidt, W., Turkel, E.: Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes. AIAA Paper 81-1259, AIAA 14th Fluid and Plasma Dynamic Conference, Palo Alto, June 1981

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antony Jameson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jameson, A. The Construction of Discretely Conservative Finite Volume Schemes that Also Globally Conserve Energy or Entropy. J Sci Comput 34, 152–187 (2008). https://doi.org/10.1007/s10915-007-9171-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-007-9171-7

Keywords

Navigation