Skip to main content
Log in

On the Approximation of Infinite Dimensional Optimal Stopping Problems with Application to Mathematical Finance

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We consider the approximation of the optimal stopping problem for infinite dimensional processes by variational methods. To this end, we employ a Fourier-Legendre representation for the state space and exhaust an indexed family of regularized Hamilton-Jacobi characterizations. We implement our results utilizing penalization and a method-of-lines semi-implicit finite element method; application to term-structure valuation problems from mathematical finance demonstrate the applicability of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akrivis, G., Crouzeix, M., Thomée, V.: Numerical methods for ultraparabolic equations. Calcolo 31, 179–190 (1996)

    Article  Google Scholar 

  2. Baxter, M., Rennie, A.: Financial Calculus, An Introduction to Derivative Pricing. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  3. Bensoussan, A., Lions, J.-L.: Application of Variational Inequalities in Stochastic Control. North-Holland, Amsterdam (1982)

    Google Scholar 

  4. Brace, A., Musiela, M.: A multifactor Gauss-Markov implementation of Heath, Jarrow, and Morton. Math. Finance 4, 259–283 (1994)

    Article  MATH  Google Scholar 

  5. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  6. Da Prato, G., Zabcyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  7. Da Prato, G., Zabcyk, J.: Ergodicity for Infinite Dimensional Systems. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  8. Davis, P.J.: Interpolation and Approximation. Dover, New York (1975)

    MATH  Google Scholar 

  9. Dean, E., Glowinski, R., Li, C.-H.: Numerical solution of parabolic problems in high dimensions. U.S. Army Research Office Report No. 88-1, 275–285 (1988)

  10. Duffie, D.: Dynamic Asset Pricing Theory, 2nd edn. Princeton University Press, New Jersey (1996)

    Google Scholar 

  11. Genčev, T.G.: Ultraparabolic equations. Dokl. Akad. Nauk SSSR 151, 265–268 (1963). English translation in Sov. Math. Dokl. 4, 979–982 (1963)

    MathSciNet  Google Scholar 

  12. Glasserman, P.: Monte Carlo Methods in Financial Engineering. Springer, New York (2003)

    Google Scholar 

  13. Glasserman, P., Heidelberger, P., Shahabuddin, P.: Importance sampling in the Heath-Jarrow-Morton framework. J. Deriv. 7(1), 32–50 (1999)

    Article  Google Scholar 

  14. Glowinski, R.: Numerical Methods for Nonlinear Problems. Springer, New York (1984)

    MATH  Google Scholar 

  15. Heath, D., Jarrow, R., Morton, A.: Bond pricing and the term structure of interest rates: a new method for contingent claim valuation. Econometrica 60, 77–105 (1992)

    Article  MATH  Google Scholar 

  16. Hull, J.C.: Options, Futures, and Other Derivatives, 4th edn. Prentice Hall, New Jersey (2000)

    Google Scholar 

  17. Kongro, R., Nicolaides, R.: Far field boundary conditions for Black-Scholes equations. SIAM J. Numer. Anal. 38, 1357–1368 (2000)

    Article  MathSciNet  Google Scholar 

  18. Kufner, A.: Weighted Sobolev Spaces. Wiley, New York (1985)

    MATH  Google Scholar 

  19. Lamberton, D., Lapeyre, B.: Introduction to Stochastic Calculus Applied to Finance. Chapman & Hall, London (1994)

    Google Scholar 

  20. Marcozzi, M.D.: On the approximation of optimal stopping problems with applications to financial mathematics. SIAM J. Sci. Comput. 22, 1865–1884 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Marcozzi, M.D.: On the valuation of Asian options by variational methods. SIAM J. Sci. Comput. 24, 1124–1140 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sapariuc, I., Marcozzi, M.D., Flaherty, J.E.: A numerical analysis of variational techniques for derivative securities. Appl. Math. Comput. 159, 171–198 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Tersenov, S.A.: On boundary value problems for a class of ultraparabolic equations and their applications Math. Sb. 133, 539–555 (1987). English translation in Math. USSR Sb. 61, 529–544 (1988)

    Google Scholar 

  24. von Petersdorff, T., Schwab, C.: Numerical solution of parabolic equations in high dimensions. ESAIM Math. Model Numer. 38, 93–128 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Marcozzi.

Additional information

This research was supported by the U.S. National Science Foundation, award number DMI-0422985.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcozzi, M.D. On the Approximation of Infinite Dimensional Optimal Stopping Problems with Application to Mathematical Finance. J Sci Comput 34, 287–307 (2008). https://doi.org/10.1007/s10915-007-9168-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-007-9168-2

Keywords

Navigation