Skip to main content
Log in

Positive Scheme Numerical Simulation of High Mach Number Astrophysical Jets

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

High Mach number astrophysical jets are simulated using a positive scheme, and are compared with WENO-LF simulations. A version of the positive scheme has allowed us to simulate astrophysical jets with radiative cooling up to Mach number 270 with respect to the heavy jet gas, a factor of two times higher than the maximum Mach number attained with the WENO schemes and ten times higher than with CLAWPACK. Such high Mach numbers occur in many settings in astrophysical flows, so it is important to develop a scheme that can simulate at these Mach numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hester, J.J., Stapelfeldt, K.R., Scowen, P.A.: Hubble space telescope wide field planetary camera 2 observations of HH 1–2. Astron. J. 116, 372–395 (1998)

    Article  Google Scholar 

  2. Ha, Y., Gardner, C.L., Gelb, A., Shu, C.-W.: Numerical simulation of high Mach number astrophysical jets with radiative cooling. J. Sci. Comput. 24, 29–44 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Gardner, C.L., Ha, Y., Hester, J.J., Krist, J.E., Shu, C.-W., Stapelfeldt, K.R.: Numerical simulation of high Mach number astrophysical jets. In: Analysis, Modeling and Computation of Hyperbolic PDE and Multiphase Flow. SUNY, Stony Brook (2005)

    Google Scholar 

  4. Liu, X.-D., Lax, P.D.: Positive schemes for solving multi-dimensional hyperbolic systems of conservation laws. J. Comput. Fluid Dyn. 5, 133–156 (1996)

    Google Scholar 

  5. Lax, P.D., Liu, X.-D.: Solution of two-dimensional Riemann problems of gas dynamics by positive schemes. SIAM J. Sci. Comput. 19, 319–340 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Shu, C.-W.: High order ENO and WENO schemes for computational fluid dynamics. In: High-Order Methods for Computational Physics. Lecture Notes in Computational Science and Engineering, vol. 9, pp. 439–582. Springer, New York (1999)

    Google Scholar 

  8. LeVeque, R.J.: CLAWPACK website. http://www.amath.washington.edu/~claw/

  9. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  10. Schmutzler, T., Tscharnuter, W.M.: Effective radiative cooling in optically thin plasmas. Astron. Astrophys. 273, 318–330 (1993)

    Google Scholar 

  11. Lax, P.D., Wendroff, B.: Systems of conservation laws. Commun. Pure Appl. Math. 13, 217 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  12. Borice, J.P., Book, D.L.: Flux corrected transport I, SHASTA, a fluid transport algorithm that works. J. Comput. Phys. 11, 38–69 (1973)

    Article  Google Scholar 

  13. Harten, A., Zwas, G.: Self-adjusting hybrid schemes for shock computations. J. Comput. Phys. 9, 568–583 (1973)

    Article  MathSciNet  Google Scholar 

  14. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43, 357–372 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  15. Harten, A.: On a class of high resolution total-variation-stable finite-difference schemes. SIAM J. Numer. Anal. 21, 1–23 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  16. Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21, 995–1011 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  17. Shu, C.-W.: Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput. 9, 1073–1084 (1988)

    Article  MATH  Google Scholar 

  18. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes II. J. Comput. Phys. 83, 32–78 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  19. Shu, C.-W.: Private communication

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl L. Gardner.

Additional information

Research supported in part by the BK21 project at KAIST.

Research supported in part by the Space Telescope Science Institute under grant HST-GO-09863.06-A.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ha, Y., Gardner, C.L. Positive Scheme Numerical Simulation of High Mach Number Astrophysical Jets. J Sci Comput 34, 247–259 (2008). https://doi.org/10.1007/s10915-007-9165-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-007-9165-5

Keywords

Navigation