Skip to main content
Log in

Pricing Multi-Asset American Options: A Finite Element Method-of-Lines with Smooth Penalty

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper studies the problem of pricing multi-asset American-style options in the Black–Scholes–Merton framework. The value function of an option contract is known to satisfy a partial differential variational inequality (PDVI) when early exercise is permitted. We develop a computational method for the valuation of multi-asset American-style options based on approximating the PDVI by a non-linear penalized PDE with a penalty term with continuous Jacobian. We convert the non-linear PDE to a variational (weak) form, discretize the weak formulation spatially by a Galerkin finite element method to obtain a system of ODEs, and integrate the resulting system of ODEs in time with an adaptive variable order and variable step size solver SUNDIALS. Numerical results demonstrate that employing a penalty term with continuous Jacobian in contrast to the penalty terms with discontinuous Jacobians in use in the literature improves computational performance of the adaptive temporal integrator. In our framework we are able to price American-style options with payoffs dependent on up to six assets on a PC. This is in contrast to the existing literature on the pricing of American options by PDE methods, that has so far been limited to at most three-dimensional problems. Our results open avenues for further applications to multi-dimensional problems, such as pricing convertible bonds in multi-factor models, that will be explored in future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bensoussan, A.: On the theory of option pricing. Acta Appl. Math. 2(2), 139–158 (1984)

    MATH  MathSciNet  Google Scholar 

  2. Bensoussan, A., Lions, J.L.: Applications of Variational Inequalities in Stochastic Control. Elsevier, Amsterdam (1982)

    MATH  Google Scholar 

  3. Bensoussan, A., Lions, J.L.: Impulse Control and Quasi-Variational Inequalities. Gauthier-Villars, Paris (1984)

    Google Scholar 

  4. Boman, M.: A Posteriori Error Analysis in the Maximum Norm for a Penalty Finite Element Method for the Time-Dependent Obstacle Problem. Preprint, Chalmers Finite Element Center, Goteborg, Sweden (2001)

  5. Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. SIAM, Philadelphia (1996)

    MATH  Google Scholar 

  6. Brennan, M.J., Schwartz, E.S.: Finite difference methods and jump processes arising in the pricing of contingent claims: a synthesis. J. Financ. Quant. Analysis 13(3), 461–474 (1978)

    Article  Google Scholar 

  7. Brezzi, F., Norrie, D.H., et al.: Finite Element Handbook. McGraw-Hill, New York (1987)

    Google Scholar 

  8. Broadie, M., Detemple, J.: American option valuation: new bounds, approximations, and a comparison of existing methods. Rev. Financ. Stud. 9(4), 1211–1250 (1996)

    Article  Google Scholar 

  9. Choi, S., Marcozzi, M.D.: A numerical approach to american currency option valuation. J. Deriv. 9(2), 19–29 (2001)

    MathSciNet  Google Scholar 

  10. Choi, S., Marcozzi, M.D.: The valuation of foreign currency options under stochastic interest rates. Comput. Math. Appl. 45, 741–749 (2003)

    Article  MathSciNet  Google Scholar 

  11. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978) (Revised Ed., SIAM, 2002)

    MATH  Google Scholar 

  12. Curran, M.: Valuing asian and portfolio options by conditioning on the geometric mean price. Manag. Sci. 40, 1705–1711 (1994)

    Article  MATH  Google Scholar 

  13. Friedman, A.: Stochastic Differential Equations and Applications, vol. 2. Academic Press, New York (1976)

    MATH  Google Scholar 

  14. Friedman, A.: Variational Principles and Free-boundary Problems. Krieger, Melbourne (1988)

    MATH  Google Scholar 

  15. Forsyth, P.A., Vetzal, K.R.: Quadratic convergence for valuing american options using a penalty method. SIAM J. Sci. Comput. 23(6), 2095–2122 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Glowinski, R., Lions, J.L., Tremolieres, R.: Numerical Analysis of Variational Inequalities. North-Holland, Amsterdam (1981)

    MATH  Google Scholar 

  17. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, Berlin (1984)

    MATH  Google Scholar 

  18. d’Halluin, Y., Forsyth, P.A., Labahn, G.: A penalty method for american options with jump-diffusion processes. Numer. Math. 97(2), 321–352 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Harel, A., Harpaz, G., Francis, J.C.: Pricing futures on geometric indexes: a discrete time approach. Rev. Quant. Financ. Account. 28, 227–240 (2007)

    Article  Google Scholar 

  20. Hindmarsh, A.C., Brown, P.N., Grant, K.E., Lee, S.L., Serban, R., Shumaker, D.E., Woodward, C.S.: SUNDIALS: suite of nonlinear and differential/algebraic equation solvers. ACM Trans. Math. Softw. 31(3), 363–396 (2005). Also available as LLNL technical report UCRL-JP-200037

    Article  MathSciNet  MATH  Google Scholar 

  21. Hindmarsh, A.C., Serban, R., Collier, A.: User documentation for IDA, a differential-algebraic equation solver for sequential and parallel computers. Technical Report UCRL-MA-136910, Lawrence Livermore National Laboratory, December, 2006

  22. Hull, J.: Options, Futures and Other Derivatives, 6th edn. Prentice-Hall, New York (2005)

    Google Scholar 

  23. Jaillet, P., Lamberton, D., Laperyre, B.: Variational inequalities and the pricing of american options. Acta Appl. Math. 21, 263–289 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  24. Johnson, C.: Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  25. Kangro, R., Nicolaides, R.: Far field boundary conditions for Black–Scholes equations. SIAM J. Numer. Analysis 38(4), 1357–1368 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Karatzas, I.: On the pricing of american options. Appl. Math. Optim. 17, 37–60 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lamberton, D., Lapeyre, B.: Introduction to Stochastic Calculus Applied to Finance. Chapman & Hall, London (1996)

    Google Scholar 

  28. Larsson, S., Thomee, V.: Partial Differential Equations with Numerical Methods. Springer, Berlin (2003)

    MATH  Google Scholar 

  29. Marcozzi, M.: On the approximation of optimal stopping problems with application to financial mathematics. SIAM J. Sci. Comput. 22(5), 1865–1884 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  30. Marcozzi, M.D., Choi, S., Chen, C.S.: On the question of boundary conditions for variational formulations arising in mathematical finance. Appl. Math. Comp. 124(2), 197–214 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  31. Nielsen, B.F., Skavhaug, O., Tveito, A.: Penalty and front-fixing methods for the numerical solution of American option problems. J. Comput. Financ. 5(4), 69–97 (2002)

    Google Scholar 

  32. Sapariuc, I., Marcozzi, M.D., Flaherty, J.E.: A numerical analysis of variational valuation techniques for derivative securities. Appl. Math. Comp. 159(1), 171–198 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  33. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, Berlin (1997)

    Google Scholar 

  34. Tavella, D., Randall, C.: Pricing Financial Instruments: The Finite Difference Method. Wiley, New York (2000)

    Google Scholar 

  35. Thomee, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (1997)

    MATH  Google Scholar 

  36. Wilmott, P., Dewynne, J., Howison, S.: Option Pricing: Mathematical Models and Computations. Oxford Financial Press, Oxford (1993)

    Google Scholar 

  37. Zvan, R., Forsyth, P.A., Vetzal, K.R.: Penalty methods for American options with stochastic volatility. J. Comput. Appl. Math. 91(2), 199–218 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim Linetsky.

Additional information

This research was supported by the National Science Foundation under grants DMI–0422937 and DMI–0422985.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovalov, P., Linetsky, V. & Marcozzi, M. Pricing Multi-Asset American Options: A Finite Element Method-of-Lines with Smooth Penalty. J Sci Comput 33, 209–237 (2007). https://doi.org/10.1007/s10915-007-9150-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-007-9150-z

Keywords

Navigation