Skip to main content
Log in

Computation of the Semiclassical Limit of the Schrödinger Equation with Phase Shift by a Level Set Method

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

In this paper, we show how the level set method, developed in [Cheng, Liu and Osher, (2003). Comm. Math. Sci. 1(3), 593–621; Jin, Liu, Osher and Tsai, (2005). J. comp. Phys. 205, 222–241; Jin and Osher, (2003). Comm. Math. Sci. 1(3), 575–591] for the numerical computation of the semiclassical limit of the Schrödinger equation, can be amended to include the phase shift using the Keller-Maslov index. This gives a more accurate approximation of the physical observables for multivalued solutions in the semiclassical limit. Numerical examples in one and two spaces dimensions demonstrate the improved accuracy of our approach away from caustics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bao W., Jin S., Markowich P.A. (2002) On time-splitting spectral approximations for the Schrödinger Equation in the semiclassical regime. J. Comput. Phys. 175(2): 487–524

    Article  MATH  MathSciNet  Google Scholar 

  2. Benamou J.D., Lafitte O., Sentis R., Solliec I. (2003) A geometric optics based numerical method for high frequency electromagnetic fields computations near fold caustics-part I. J. Comput. Appl. Math. 156(1): 93–125

    MATH  MathSciNet  Google Scholar 

  3. Benamou J.D., Lafitte O., Sentis R., Solliec I. (2004) A geometric optics based numerical method for high frequency electromagnetic fields computations near fold caustics-part II. J. Comput. Appl. Math. 167(1): 91–134

    MATH  MathSciNet  Google Scholar 

  4. Bender C.M., Orszag S.A. (1978) Advanced mathematical methods for scientists and engineers. McGraw-Hill, New York

    MATH  Google Scholar 

  5. Brenier Y., Corrias L. (1998) A kinetic formulation for multibranch entropy solutions of scalar conservation laws. Ann. Inst. Henry Poincaré 15(2): 169–190

    Article  MATH  MathSciNet  Google Scholar 

  6. Carles, R., and Gosse, L. Numerical aspects of nonlinear Schrödinger equations in the presence of caustics. Math. Models Methods Appl. Sci unpublished.

  7. Cheng L.-T., Liu H., Osher S. (2003) Computational high-frequency wave propagation using the level set method, with applications to the semi-classical limit of Schrödinger equations. Comm. Math. Sci. 1(3): 593–621

    MATH  MathSciNet  Google Scholar 

  8. Duistermaat, J. J. (1995). Fourier integral operators. Birkhäuser.

  9. Engquist B., Fatemi E., Osher S. (1995) Numerical solution of the high frequency asymptotic expansion for the scalar wave equation. J. Comput. Phys. 120(1): 145–155

    Article  MATH  MathSciNet  Google Scholar 

  10. Engquist B., Runborg O. (1996) Multi-phase computations in geometrical optics. J. Comput. Appl. Math. 74: 175–192

    Article  MATH  MathSciNet  Google Scholar 

  11. Evans L.C. (1998) Partial differential equations. American Mathematical Society, USA

    MATH  Google Scholar 

  12. Gasser I., Markowich P.A. (1997) Quantum hydrodynamics, Wigner transforms and the classical limits. Asympt. Anal. 14: 97–116

    MATH  MathSciNet  Google Scholar 

  13. Gerard P., Markowich P.A., Mauser N.J., Poupaud F. (1997) Homogenization limits and Wigner transforms. Comm. Pure Appl. Math. 50(4): 323–379

    Article  MATH  MathSciNet  Google Scholar 

  14. Gosse L. (2002) Using K-branch entropy solutions for multivalued geometric optics computations. J. Comput. Phys. 180(1): 155–182

    Article  MATH  MathSciNet  Google Scholar 

  15. Gosse L., Jin S., Li X.T. (2003) On two moment systems for computing multiphase semiclassical limits of the Schrödinger equation. Math. Models Meth. Appl. Sci. 13(12): 1689–1723

    Article  MATH  MathSciNet  Google Scholar 

  16. Jin S., Li X.T. (2003) Multi-phase computations of the semiclassical limit of the Schrödinger equation and related problems: Whitham vs. Wigner. Physica D 182: 46–85

    Article  MATH  MathSciNet  Google Scholar 

  17. Jin S., Liu H., Osher S., Tsai R. (2005) Computing multi-valued physical observables the semiclassical limit of the Schrödinger equations, J. Comp. Phys. 205: 222–241

    Article  MATH  MathSciNet  Google Scholar 

  18. Jin S., Osher S. (2003) A level set method for the computation of multivalued solutions to quasi-linear hyperbolic PDEs and Hamilton–Jacobi equations. Comm. Math. Sci. 1(3): 575–591

    MATH  MathSciNet  Google Scholar 

  19. Lions P.L., Paul T. (1993) Sur les measures de Wigner. Revista. Mat. Iberoamericana 9: 553–618

    MATH  MathSciNet  Google Scholar 

  20. Lions P.L., Souganidis P.E. (1995) Convergence of MUSCL and filtered schemes for scalar conservation laws and Hamilton–Jacobi equations. Numer. Math. 69(4): 441–470

    Article  MATH  MathSciNet  Google Scholar 

  21. Markowich P.A., Pietra P., Pohl C. (1999) Numerical approximation of quadratic obaservables of Schrödinger-type equations in the semiclassical limit. Numer. Math. 81: 595–630

    Article  MATH  MathSciNet  Google Scholar 

  22. Markowich P.A., Pietra P., Pohl C., Stimming H.P. (2002) A wigner-measure analysis of the Dufort–Frankel scheme for the Schrödinger equation. SIAM J. Num. Anal. 40: 1281–1310

    Article  MATH  MathSciNet  Google Scholar 

  23. Maslov, V. P. (1981). Semiclassical approximation in quantum mechanics. Reidel Dordrecht.

  24. Min C. (2003) Simplicial isosurfacing in arbitrary dimension and codimension. J. Comp. Phys. 190(1): 295–310

    Article  MATH  MathSciNet  Google Scholar 

  25. Osher S., Cheng L.-T., Kang M., Shim H., Tsai Y.-H. (2002) Geometric optics in a phase-space-based level set and eulerian framework. J. Comput. Phys. 179: 622–648

    Article  MATH  MathSciNet  Google Scholar 

  26. Peng D., Merriman B., Osher S., Zhao H., Kang M. (1999) A PDE based fast local level set method. J. Comput. Phys. 155: 410–438

    Article  MATH  MathSciNet  Google Scholar 

  27. Qian J., Cheng L.-T., Osher S. (2003) A level set based eulerian approach for anisotropic wave propagation. Wave Motion 37: 365–379

    Article  MATH  MathSciNet  Google Scholar 

  28. Whitham G.B. (1974) Linear and nonlinear waves. Wiley, New York

    MATH  Google Scholar 

  29. Wigner E. (1932) On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40: 749–759

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, S., Yang, X. Computation of the Semiclassical Limit of the Schrödinger Equation with Phase Shift by a Level Set Method. J Sci Comput 35, 144–169 (2008). https://doi.org/10.1007/s10915-007-9137-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-007-9137-9

Keywords

Navigation