Skip to main content
Log in

Simulation of the Paraxial Laser Propagation Coupled with Hydrodynamics in 3D Geometry

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

We address here numerical simulation problems for modeling some phenomena arising in plasmas produced in experimental devices for Inertial Confinement Fusion. The model consists of a compressible fluid dynamics system coupled with a paraxial equation for modeling the laser propagation. For the fluid dynamics system, a numerical method of Lagrange–Euler type is used. For the paraxial equation, a time implicit discretization is settled which preserves the laser energy balance; the method is based on a splitting of the propagation term and the diffraction terms according to the propagation spatial variable. We give some features on the 3D implementation of the method in the parallel platform HERA. Results showing the accuracy of the numerical scheme are presented and we give also numerical results related to cases corresponding to realistic simulations, with a mesh containing up to 500 millions of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. André, M., et al. (2000). Laser MégaJoule project status. In Proceedings IFSA Conf. Elsevier-Gauthier-Villars, Paris.

  2. Bender C.M., Orszag S.A. (1978) Advanced Math. Methods for Scientists and Engineers. McGraw-Hill, London

    Google Scholar 

  3. Bérenger J.P. (1994) A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114: 185

    Article  MATH  MathSciNet  Google Scholar 

  4. Berger R.L. et al. (1993) Theory and three-dimensional simulation of light filamentation. Phys. Fluids B 5: 2243

    Article  Google Scholar 

  5. Collino F. (1997) Perfectly matched absorbing layers for the paraxial equations. J. Comput. Phys. 131: 164

    Article  MATH  MathSciNet  Google Scholar 

  6. Decoster A. (1997) Fluid equations and transport coefficients. In: Raviart P.A. (eds). Modeling of Collisions. Dunod, Paris

    Google Scholar 

  7. Del Pino, S., and Jourdren, H. (2005). Arbirary high-order schemes for the advection and wave equations: Application to hydrodynamics and aero-acoutics. Submitted to C. R. Ac. Sciences, Paris, série I, 342, pp. 441–444.

    Google Scholar 

  8. Dorr M.R., Garaizar F.X., Hittinger J.A. (2002) Simuation of laser-plasma filamentation. J. Comp. Phys. 177: 233–263

    Article  MATH  Google Scholar 

  9. Doumic, M., Golse, F., and Sentis, R. (2003). Propagation laser paraxiale en coordonnées obliques: équation d’advection-Schrödinger. Note C. R. Ac. Sciences, Paris, série I 336, p. 23.

  10. Feit M.D., Fleck J.A. (1988) Beam non paraxiality. J. Optical Soc. America B 5: 633

    Article  Google Scholar 

  11. Godunov, S., et al. (1979). Résolution Numérique des Problèmes Multidimensionnels de la Dynamique des gaz. Editions Mir, Moscou.

  12. Jourdren, H. (2005). HERA: a hydrodynamics AMR Platform for multiphysics simulations. In Plewa, T., Linde, T., and Weirs, V. G. (eds.), AMR Methods, Theory and Applications. Lect. Notes Comp. Sciences Eng. Vol. 41, Springer, Berlin.

  13. Kruer W.L. (1988) Physics of Laser-Plasma Interaction. Addinson-Wesley, Redwood

    Google Scholar 

  14. Lindl J.D., Amendt P. et al. (2004) The physics basis for ignition using indirect drive targets. Phy. Plasmas 11: 339

    Article  Google Scholar 

  15. Loiseau P., Morice O., Teychenne D., Casanova M., Hüller S., Pesme D. (2006) Laser beam smoothing induced by stimulated brillouin scattering. Phys. Rev. Lett. 97: 205001

    Article  Google Scholar 

  16. Sentis R. (2005) Mathematical models for laser-plasma interaction. ESAIM: Math. Modeling Num. Analysis 39: 275

    Article  MATH  MathSciNet  Google Scholar 

  17. Sentis, R., Desroziers, S., and Nataf, F. (2007). Simulation of laser propagation in a plasma with a frequency wave equation. In Dayde, M. et al., (eds.), Proceedings of VECPAR’06. Springer, Berlin, pp. 518–529.

  18. Sentis R., Doumic M., Golse F. (2003) Paraxial approximation in a tilted frame for laser wave propagation. In: Cohen G.C. et al. (eds). Math. and Numerical Aspects of Wave. Spinger, Berlin

    Google Scholar 

  19. Still, C. H., Berger, R. L., Langdon, A. B., and Williams, E. A. (1996). Three-dimensional non-linear hydro code to study laser-plasma interaction. Technical Report UCRL 105821-96-4, Lawrence Livermore Nat. Lab.

  20. Walraet F., Riazuelo G., Bonnaud G. (2003) Propagation in a plasma of a laser beam smoothed by longitudinal spectral dispersion. Phys. Plasmas 10: 811

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Casanova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballereau, P., Casanova, M., Duboc, F. et al. Simulation of the Paraxial Laser Propagation Coupled with Hydrodynamics in 3D Geometry. J Sci Comput 33, 1–24 (2007). https://doi.org/10.1007/s10915-007-9135-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-007-9135-y

Keywords

Navigation