Skip to main content
Log in

Implicit–Explicit Schemes for BGK Kinetic Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

In this work a new class of numerical methods for the BGK model of kinetic equations is presented. In principle, schemes of any order of accuracy in both space and time can be constructed with this technique. The methods proposed are based on an explicit–implicit time discretization. In particular the convective terms are treated explicitly, while the source terms are implicit. In this fashion even problems with infinite stiffness can be integrated with relatively large time steps. The conservation properties of the schemes are investigated. Numerical results are shown for schemes of order 1, 2 and 5 in space, and up to third-order accurate in time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andries P., Aoki K., Perthame B. (2002). A consistent BGK-type model for gas mixtures, J. Stat. Phys. 106:993–1018

    Article  MATH  MathSciNet  Google Scholar 

  2. Andries P., Bourgat J.F., Le-Tallec P., Perthame B. (2002). Numerical comparison between the Boltzmann and ES-BGK models for rarefied gases. Comput. Methods Appl. Math. Eng. 31:3369

    Article  MathSciNet  Google Scholar 

  3. Aoki K., Kanba K., Takata S. (1997). Numerical analysis of a supersonic rarefied flow past a flat plate. Phys. Fluids 9:1144–1161

    Article  Google Scholar 

  4. Aoki K., Sone Y., Yamada T. (1990). Numerical analysis of gas flows condensing on its plane condensed phase on the basis of kinetic theory. Phys. Fluids A 2:1867–1878

    Article  MATH  Google Scholar 

  5. Aregba-Driollet D., Natalini R., Tang S. (2003). Explicit diffusive kinetic schemes for non linear degenerate parabolic systems. Math. Comp. 73, 63–94

    Article  MathSciNet  Google Scholar 

  6. Asher U., Ruuth S., Spiteri R.J. (1997). Implicit-explicit Runge-Kutta methods for time dependent partial differential equations. Appl. Numer. Math. 25, 151–167

    Article  MathSciNet  Google Scholar 

  7. Bhatnagar P.L., Gross E.P., Krook M. (1954). A model for collision processes in gases. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525

    Article  MATH  Google Scholar 

  8. Bird G.A. (1994). Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford University Press, Oxford

    Google Scholar 

  9. Carrillo J.A., Gamba I.M., Majorana A., Shu C.-W. (2003). A WENO-solver for the transients of Boltzmann-Poisson system for semiconductor devices: performance and comparisons with Monte Carlo methods. J. Comput. Phys. 184, 498–525

    Article  MATH  MathSciNet  Google Scholar 

  10. Cercignani C. (2000). Rarefied Gas Dynamics, from Basic Concepts to Actual Calculations. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  11. Cercignani C., Illner R., Pulvirenti M. (1994). The Mathematical Theory of Dilute Gases. Springer-Verlag, Berlin, Applied Mathematical Sciences, vol. 106

    MATH  Google Scholar 

  12. Chu C.K. (1965). Kinetic-theoretic description of the formation of a shock wave. Phys. Fluids 4, 12–22

    Article  Google Scholar 

  13. Coron F., Perthame B. (1991). Numerical passage from kinetic to fluid equations. SIAM J. Numer. Anal. 28, 26–42

    Article  MATH  MathSciNet  Google Scholar 

  14. Guo, Z., Zhao, T. S., and Shi, Y. (2005). Simple kinetic model for fluid flows in the nanometer scale. Phys. Rev. E 71,035301-1, 035301-4.

    Google Scholar 

  15. Harten A., Engquist B., Osher S., Chakravarthy S. (1987). Uniformly high order accurate essentially non-oscillatory schemes III. J. Comput. Phys. 71, 231–303

    Article  MATH  MathSciNet  Google Scholar 

  16. Holway L.H. (1966). Kinetic Theory of Shock Structure using an Ellipsoidal Distribution Function. Academic Press, New York, pp. 193–215.

    Google Scholar 

  17. Kennedy C.A., Carpenter M.H. (2003). Additive Runge–Kutta schemes for convection-diffusion-reaction equations. Appl. Numer. Math. 44, 139–181

    Article  MATH  MathSciNet  Google Scholar 

  18. Mieussens L. (2000). Discrete velocity model and implicit scheme for the BGK equation of rarefied gas dynamics. Math. Models Methods Appl. Sci. 10:1121–1149

    MathSciNet  Google Scholar 

  19. Mieussens L. (2000). Schemes for Boltzmann-BGK equation in plane and axisymmetric geometries. J. Comput. Phys. 162, 429–466

    Article  MATH  MathSciNet  Google Scholar 

  20. Monaco R., Bianchi M.P., Soares A.J. (2005). BGK-type models in strong reaction and kinetic chemical equilibrium regimes. J. Phys. A Math. Gen. 38:10413–10431

    Article  MATH  Google Scholar 

  21. Pareschi L., Puppo G., Russo G. (2005). Central Runge–Kutta schemes for conservation laws. SIAM J. Sci. Comput. 26, 979–999

    Article  MATH  MathSciNet  Google Scholar 

  22. Pareschi, L., and Russo, G. (2000). Implicit-Explicit Runge–Kutta Schemes for Stiff Systems of Differential Equations, Recent Trends in Numerical Analysis. In Brugnano, L., and Trigiante, D. (eds.), vol. 3, Nova Science, New York, pp. 269–289.

  23. Pareschi L., Russo G. (2000). Numerical solution of the Boltzmann equation I: spectrally accurate approximation of the collision operator. SIAM J. Numer. Anal. 37:1217–1245

    Article  MATH  MathSciNet  Google Scholar 

  24. Pareschi, L., and Russo, G. (2001). An introduction to Monte Carlo methods for the Boltzmann equation. ESAIM: Proceedings, Vol. 10, Soc. Math. Appl. Indust., Paris, 1999, pp. 35–76.

  25. Pareschi L., Russo G. (2005). Implicit-explicit Runge–Kutta methods and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25, 129–155

    Article  MathSciNet  Google Scholar 

  26. Pareschi, L., and Russo, G. (2005). An introduction to the numerical analysis of the Boltzmann equation. Riv. Mater. Univ. Parma 4 **, 145–250.

    Google Scholar 

  27. Perthame B. (1989). Global existence to the BGK model of Boltzmann equation. J. Diff. Equat. 82, 191–205

    Article  MATH  MathSciNet  Google Scholar 

  28. Puppo G. (2003/04). Numerical entropy production for central schemes. SIAM J. Sci. Comput. 25:1382–1415

    Article  MathSciNet  Google Scholar 

  29. Puppo, G., and Russo, G. (2005). Staggered finite difference schemes for balance laws. Proceedings of HYP 2004. Hyperbolic problems: Theory, Numerics, Applications, Vol II, 2006, Yokohama Publishers, pp. 243–250.

  30. Saint-Raymond L. (2003). From the BGK model to the Navier-Stokes equations. Ann. Sci. Écn. Norm. Super. 4 esérie, t. 36, 271–317

    Google Scholar 

  31. Shu, C.-W. (1998). Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws, Quarteroni, A. (ed.), Lecture notes in Mathematics, Vol. 1697, Springer, Berlin, pp. 325–432.

  32. Shu C.-W., Osher S. (1988). Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 438–471

    Article  MathSciNet  Google Scholar 

  33. Vincenti, W. G., and Kruger, C. H. (1986). Introduction to Physical Gas Dynamics, Krieger FL, USA.

  34. Xu K. (2001). A gas-kinetic BGK scheme for the Navier–Stokes equations and its connection with artificial dissipation and Godunov method. J. Comput. Phys. 171, 289–335

    Article  MATH  MathSciNet  Google Scholar 

  35. Yang J.Y., Huang J.C. (1995). Rarefied flow computations using nonlinear model Boltzmann equations. J. Comput. Phys. 120, 323–339

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriella Puppo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pieraccini, S., Puppo, G. Implicit–Explicit Schemes for BGK Kinetic Equations. J Sci Comput 32, 1–28 (2007). https://doi.org/10.1007/s10915-006-9116-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-006-9116-6

Keywords

Navigation