Skip to main content
Log in

A Novel Class of Symmetric and Nonsymmetric Periodizing Variable Transformations for Numerical Integration

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Variable transformations for numerical integration have been used for improving the accuracy of the trapezoidal rule. Specifically, one first transforms the integral \({I[f]=\int^1_0f(x) dx}\) via a variable transformation \({x=\phi(t)}\) that maps [0,1] to itself, and then approximates the resulting transformed integral \({I[f]= \int^1_0 f\big(\phi(t)\big)\phi'(t) dt}\) by the trapezoidal rule. In this work, we propose a new class of symmetric and nonsymmetric variable transformations which we denote \({\mathcal{T}_{r,s}}\) , where r and s are positive scalars assigned by the user. A simple representative of this class is \({\phi(t)=(sin\frac{\pi}{2}t)^r/[(sin\frac{\pi}{2}t)^r+(\cos\frac{\pi}{2}t)^s]}\) . We show that, in case \({f\in C^\infty[0,1]}\) , or \({\in C^\infty(0,1)}\) but has algebraic (endpoint) singularities at x = 0 and/or x = 1, the trapezoidal rule on the transformed integral produces exceptionally high accuracies for special values of r and s. In particular, when \({f\in C^\infty[0,1]}\) and we employ \({\phi\in{\mathcal T}_{r,r}}\) , the error in the approximation is (i) O(h r) for arbitrary r and (ii) O(h 2r) if r is a positive odd integer at least 3, h being the integration step. We illustrate the use of these transformations and the accompanying theory with numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., and Stegun, I. A. (1964). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Number 55 in Nat. Bur. Standards Appl. Math. Series. US Government Printing Office, Washington, DC.

  2. Atkinson K.E. (1989). An Introduction to Numerical Analysis, second edition. Wiley, New York

    MATH  Google Scholar 

  3. Atkinson K.E. (2004). Quadrature of singular integrands over surfaces. Electr. Trans. Numer. Anal. 17, 133–150

    MATH  Google Scholar 

  4. Atkinson K.E., Sommariva A. (2005). Quadrature over the sphere. Electr. Trans. Numer. Anal. 20, 104–118

    MATH  MathSciNet  Google Scholar 

  5. Davis P.J., Rabinowitz P. (1984). Methods of Numerical Integration, second edition. Academic Press, New York

    Google Scholar 

  6. Johnston P.R. (2000). Semi-sigmoidal transformations for evaluating weakly singular boundary element integrals. Int. J. Numer. Meth. Eng. 47, 1709–1730

    Article  MATH  MathSciNet  Google Scholar 

  7. Monegato G., Scuderi L. (1999). Numerical integration of functions with boundary singularities. J. Comp. Appl. Math. 112, 201–214

    Article  MATH  MathSciNet  Google Scholar 

  8. Robinson I., Hill M. (2002). Algorithm 816: r2d2lri: An algorithm for automatic two-dimensional cubature. ACM Trans. Math. Software 28, 75–100

    Article  MATH  Google Scholar 

  9. Sidi, A. (1993). A new variable transformation for numerical integration. In Brass, H. and Hämmerlin, G. (eds.), Numerical Integration IV, number 112 in ISNM, Basel, Birkhäuser, pp. 359–373.

  10. Sidi A. (2003) Practical Extrapolation Methods: Theory and Applications, Number 10 in Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge

    Google Scholar 

  11. Sidi A. (2004). Euler–Maclaurin expansions for integrals with endpoint singularities: a new perspective. Numer. Math. 98, 371–387

    Article  MATH  MathSciNet  Google Scholar 

  12. Sidi A. (2005). Analysis of Atkinson’s variable transformation for numerical integration over smooth surfaces in \(\mathbb{R}^{3}\) . Numer. Math. 100, 519–536

    Article  MATH  MathSciNet  Google Scholar 

  13. Sidi A. (2005). Application of class \(\mathcal{S}_{m}\) variable transformations to numerical integration over surfaces of spheres. J. Comp. Appl. Math. 184, 475–492

    Article  MATH  MathSciNet  Google Scholar 

  14. Sidi A. (2005). Numerical integration over smooth surfaces in \(\mathbb{R}^{3}\) via class \(\mathcal{S}_{m}\) variable transformations. Part I: Smooth integrands. Appl. Math. Comp. 171, 646–674

    Article  MATH  MathSciNet  Google Scholar 

  15. Sidi A. (2006). Extension of a class of periodizing variable transformations for numerical integration. Math. Comp. 75, 327–343

    Article  MATH  MathSciNet  Google Scholar 

  16. Sidi, A. (2006). Further extension of a class of periodizing variable transformations for numerical integration. Preprint. Computer Science Dept., Technion – Israel Institute of Technology.

  17. Sidi A. (2006). Numerical integration over smooth surfaces in \(\mathbb{R}^{3}\) via class \(\mathcal{S}_{m}\) variable transformations. Part II: Singular integrands. Appl. Math. Comp. 181, 291–309

    Article  MathSciNet  Google Scholar 

  18. Sloan I.H., Joe S. (1994). Lattice Methods in Multiple Integration. Clarendon Press, Oxford

    Google Scholar 

  19. Stoer J., Bulirsch R. (2002). Introduction to Numerical Analysis, 3rd edn. Springer-Verlag, New York

    MATH  Google Scholar 

  20. Verlinden P., Potts D.M., Lyness J.N. (1997). Error expansions for multidimensional trapezoidal rules with Sidi transformations. Numer. Algorithms 16, 321–347

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avram Sidi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sidi, A. A Novel Class of Symmetric and Nonsymmetric Periodizing Variable Transformations for Numerical Integration. J Sci Comput 31, 391–417 (2007). https://doi.org/10.1007/s10915-006-9110-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-006-9110-z

Keywords

Mathematics Subject Classification 2000

Navigation