Skip to main content
Log in

On The Eigenvalues of the Spectral Second Order Differentiation Operator and Application to the Boundary Observability of the Wave Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

 

The behaviour of the eigenvalues of the spectral second-order differentiation operator is studied and the results are used to investigate the boundary observability of the one dimensional wave equation approximated with a spectral Galerkin method. New explicit estimates of the discrete eigenvalues are given. These estimates improve the previous results on the subject especially for the portion of eigenvalues converging exponentially to those of the continuous problem. Although the boundary observability property of the discretized wave equation is not uniform with respect to the discretization parameter, we show that a uniform observability estimate can be obtained by filtering out the highest eigenmodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banks, H. T., Ito K., and Wang, C. (1991). Exponentially stable approximations of weakly damped wave equations. In Desch, F. et al. (ed.), Estimation and Control of Distributed Parameter Systems (Vorau, 1990), Int. Series Num. Math. Vol. 100, Birkhäuser, Basel, pp. 1–33.

  2. Ben Belgacem, F. Remarques sur les valeurs propres de l’opérateur de Laplace avec différentes conditions aux limites approché par méthode spectrale. Comptes Rendus de l’Académies des Sciences, Série I, T. 321, 783–790.

  3. Bernardi, C., and Maday, Y. (1997). Spectral methods. In Handbook of Numerical Analysis, Volume V. Techniques of Scientific Computing. (Part 2), Ciarlet, P. G. and Lions, L. L. (eds.), North-Holland and Asterdam.

  4. Canuto C., Hussaini M.Y., Quarteroni A., Zang T.A. (1988). Spectral Methods in Fluid Dynamics. Springer Verlag, Berlin, New-York

    MATH  Google Scholar 

  5. Gottlieb D., Lustman L. (1983). The spectrum of the chebyshev collocation operator for the heat equation. SIAM J. Numer. Anal. 20(5):909–921

    Article  MATH  MathSciNet  Google Scholar 

  6. Gottlieb D., Orszag S.A. (1977). Numerical Analysis of Spectral Methods: Theory and Applications. SIAM, Philadelphia PA

    MATH  Google Scholar 

  7. Infante J.A., Zuazua E. (1999). Boundary observability for the space semi-discretizations of the 1-d wave equation. Math. Modell. Numer. Anal. 33(2):407–438

    Article  MATH  MathSciNet  Google Scholar 

  8. Ingham A.E. (1936). Some trigonometrical inequalities with applications to the theory of series. Mathe. Zeitschrift 41:367–379

    Article  MATH  MathSciNet  Google Scholar 

  9. Krabs, W. (1992). On Moment Theory and Controllability of One-Dimensional Vibrating Systems and Heating Processes, Lecture Notes in Control and Information Sciences, Vol. 173. Springer, Berlin.

  10. León, L., and Zuazua, E. (2002). Boundary Controllability of the Finite-Difference Space Semi-Discretizations of the Beam Equation. ESAIM:COCV, Special volume dedicated to the memory J. L. Lions, Tome 2, pp. 827–862.

  11. Lions, J.-L. (1988). Contrôlabilité Exacte, Stabilisation et Perturbations de Systèmes Distribués. Tome 1. Contrôlabilité exacte, Masson, RMA8, Paris.

  12. Qu C.K., Wong R. (1999). “Best possible” upper and lower bounds for the zeros of the Bessel function J ν(x). Trans. Am. Math. Soci. 351(7):2833–2859

    Article  MATH  MathSciNet  Google Scholar 

  13. Shen J. (1994). Efficient spectral-Galerkin method I. Direct solvers for second-and fourth-order equations using Legendre polynomials. SIAM J. Sci. Comput. 15:1489–1505

    MATH  Google Scholar 

  14. Sontag E.D. (1998). Mathematical Control Theory: Deterministic Finite Dimensional Systems, 2nd edn. Springer, New York

    Google Scholar 

  15. Tcheugoué Tébou L.R., and Zuazua, E. (2004). Uniform boundary stabilization of the finite difference space discretization of the 1-d wave. preprint.

  16. Vandeven H. (1990). On the eigenvalues of second order pseudo-spectral differentiation operators. Comput. Methods Appl. Mech. Eng. 80:313–318

    Article  MATH  MathSciNet  Google Scholar 

  17. Watson G.N. (1980). A Treatrise on the Theory of Bessel Functions. Cambridge University Press, Cambridge

    Google Scholar 

  18. Weideman J.A.C., Trefethen L.N. (1988). The eigenvalues of second-order spectral matrices. differentiation matrices. SIAM J. Numer. Anal. 25(6):1279–1298

    Article  MATH  MathSciNet  Google Scholar 

  19. Welfert B.D. (1994). On the eigenvalues of second order pseudo-spectral differentiation operators. Comput. Methods Appl. Mech. Eng. 116:281–292

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Z. Boulmezaoud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boulmezaoud, T.Z., Urquiza, J.M. On The Eigenvalues of the Spectral Second Order Differentiation Operator and Application to the Boundary Observability of the Wave Equation. J Sci Comput 31, 307–345 (2007). https://doi.org/10.1007/s10915-006-9106-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-006-9106-8

Keywords

2000 Mathematics Subject Classification

Navigation