Skip to main content
Log in

Enhanced Coercivity for Pure Advection and Advection–Diffusion Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

We present a common framework in which to set advection problems or advection–diffusion problems in the advection dominated regime, prior to any discretization. It allows one to obtain, in an easy way via enhanced coercivity, a bound on the advection derivative of the solution in a fractional norm of order −1/2. The same bound trivially applies to any Galerkin approximate solution, yielding a stability estimate which is uniform with respect to the diffusion parameter. The proposed formulation is discussed within Fourier methods and multilevel (wavelet) methods, for both steady and unsteady problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berrone S., Canuto C. (2004). Multilevel a posteriori error analysis for reaction-convection-diffusion problems. Appl. Numer. Math. 50, 371–394

    Article  MathSciNet  MATH  Google Scholar 

  2. Bertoluzza S., Canuto C., Tabacco A. (2000). Stable discretizations of convection-diffusion problems via computable negative-order inner products. SIAM J. Num. Anal. 38, 1034–1055

    Article  MathSciNet  MATH  Google Scholar 

  3. Brezzi F., Russo A. (1994). Choosing bubbles for advection-diffusion problems. Math. Models Methods Appl. Sci. 4, 571–587

    Article  MathSciNet  MATH  Google Scholar 

  4. Brooks A.N., Hughes T.J.R. (1982). Streamline upwind/Petrov Galerkin formulations for convective-dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 32, 199–259

    Article  MathSciNet  MATH  Google Scholar 

  5. Canuto C., Hussaini M.Y., Quarteroni A., Zang T.A. (2006). Spectral Methods, Fundamentals in Single Domains. Springer, Berlin Heidelberg

    MATH  Google Scholar 

  6. Canuto C., Tabacco A. (2001). An anisotropic functional setting for convection-diffusion problems. East-West J. Numer. Math. 9, 199–231

    MathSciNet  MATH  Google Scholar 

  7. Canuto C., Tabacco A. (2003). Anisotropic wavelets along vector fields and applications to PDE’s. A. J. Sci. Engng. 28, 89–105

    MathSciNet  Google Scholar 

  8. Cockburn B. (1998). An introduction to the Discontinuous Galerkin method for convection-dominated problems. In: Quarteroni A. (eds). Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lect. Notes in Mathematics 1697, Springer, Berlin

    Google Scholar 

  9. Cohen A. (2000). Wavelet methods in numerical analysis. In: Ciarlet P.G., Lions J.L. (eds). Handbook of Numerical Analysis, vol. VII, Elsevier, Amsterdam

    Google Scholar 

  10. Cohen A., Daubechies I., Vial P. (1993). Wavelets on the interval and fast wavelet transform. Appl. Comp. Harm. Anal. 1, 54–81

    Article  MathSciNet  MATH  Google Scholar 

  11. Funaro D. (1993). A new scheme for the approximation of advection-diffusion equations by collocation. SIAM J. Numer. Anal. 30, 1664–1676

    Article  MathSciNet  MATH  Google Scholar 

  12. Gottlieb D., Orszag S.A. (1977). Numerical Analysis of Spectral Methods: Theory and Applications. SIAM, Philadelphia

    MATH  Google Scholar 

  13. Grivet-Talocia S., Tabacco A. (2000). Wavelets on the interval with optimal localization. Math. Models Methods Appl. Sci. 10, 441–462

    MathSciNet  MATH  Google Scholar 

  14. Hughes T.J.R., Feijo G.R., Mazzei L., Quincy J.-B. (1998). The variational multiscale method: a paradigm for computational mechanics. Comput. Methods Appl. Mech. Engrg. 166, 3–24

    Article  MathSciNet  MATH  Google Scholar 

  15. Houston P., Schwab C., Süli E. (2002). Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39, 2133–2163

    Article  MathSciNet  MATH  Google Scholar 

  16. Eriksson K., Estep D., Hansbo P., Johnson C. (1995). Adaptive methods for differential equations. Acta Numer. 5, 105–158

    Article  MathSciNet  Google Scholar 

  17. Roos H.G., Stynes M., Tobiska L., (1995). Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion and Flow Problems. Springer, Berlin

    Google Scholar 

  18. Sangalli G. (2004). Analysis of the advection-diffusion operator using fractional order norms. Numer. Math. 97, 779–796

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Canuto.

Additional information

Dedicated to David Gottlieb on the occasion of his 60th Birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canuto, C. Enhanced Coercivity for Pure Advection and Advection–Diffusion Problems. J Sci Comput 28, 223–244 (2006). https://doi.org/10.1007/s10915-006-9081-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-006-9081-0

Keywords

AMS Subject Classifications

Navigation