Skip to main content
Log in

Recovering High-Order Accuracy in WENO Computations of Steady-State Hyperbolic Systems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

In this note we consider the application of the WENO scheme to simulations of steady-state flow in a converging diverging nozzle. We demonstrate the recovery of design accuracy through Gegenbauer postprocessing, despite the degradation of the order of accuracy for the numerical solution of the Euler equations to first-order in regions where the characteristics passed through the shock. We have shown a case in which the Gegenbauer postprocessing can recover the order of accuracy right up to the shock location. This suggests that high-order accurate information which crosses through the shock may not be irretrievably lost, and we can strive to recover it through various types of postprocessing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Archibald R., Gelb A., and Yoon J. (2005). Polynomial fitting for edge detection in irregularly sampled signals and images. SIAM J. Numer. Anal 43:259–279

    Article  MathSciNet  MATH  Google Scholar 

  2. Bateman H. (1953). Higher Transcendental Functions, Vol 2. McGraw-Hill, New York

    MATH  Google Scholar 

  3. Casper J., and Carpenter M. (1998). Computational considerations for the simulation of shock induced sound. SIAM J. Sci. Comput 19:813–828

    Article  MATH  MathSciNet  Google Scholar 

  4. Gelb A. (2004). Parameter optimization and reduction of round off error for the Gegenbauer reconstruction method. J. Sci. Comput 20:433–459

    Article  MathSciNet  MATH  Google Scholar 

  5. Gelb A., and Tadmor E. (2000). Enhanced spectral viscosity approximations for conservation laws. Appl. Numer. Math. 33: 3–21

    Article  MATH  MathSciNet  Google Scholar 

  6. Gottlieb D., Shu C.-W., Solomonoff A., and Vandeven H. (1992). On the Gibbs phenomenon I: recovering exponential accuracy from the Fourier partial sum of a non-periodic analytic function. J. Comput. Appl. Math 43:81–98

    Article  MATH  MathSciNet  Google Scholar 

  7. Gottlieb D., and Shu C.-W. (1996). On the Gibbs phenomenon III: recovering exponential accuracy in a sub-interval from a spectral partial sum of a piecewise analytic function. SIAM J. Numer. Anal 33:280–290

    Article  MATH  MathSciNet  Google Scholar 

  8. Gottlieb D., and Shu C.-W. (1995). On the Gibbs phenomenon IV: recovering exponential accuracy in a sub-interval from a Gegenbauer partial sum of a piecewise analytic function. Math. Comput 64:1081–1095

    Article  MATH  MathSciNet  Google Scholar 

  9. Gottlieb D., and Shu C.-W. (1995). On the Gibbs phenomenon V: recovering exponential accuracy from collocation point values of a piecewise analytic function. Numerische Mathematik 71:511–526

    Article  MATH  MathSciNet  Google Scholar 

  10. Gottlieb D., and Shu C.-W. (1997). On the Gibbs phenomenon and its resolution. SIAM Rev 30:644–668

    Article  MathSciNet  Google Scholar 

  11. Harten A., Engquist B., Osher S., and Chakravarthy S. (1987). Uniformly high order essentially non-oscillatory schemes I. SIAM J. Numer. Anal 24:279–309

    Article  MATH  MathSciNet  Google Scholar 

  12. Harten A., Engquist B., Osher S., and Chakravarthy S. (1987). Uniformly high order essentially non-oscillatory schemes III. J. Comput. Phys 71:231–303

    Article  MATH  MathSciNet  Google Scholar 

  13. Jiang G.-S., and Shu C.-W. (1996). Efficient implementation of weighted ENO schemes. J. Comput. Phys 126:202–228

    Article  MATH  MathSciNet  Google Scholar 

  14. Lax P.D. (1978). Accuracy and resolution in the computation of solutions of linear and nonlinear equations. In: De Boor C., and Golub G. (eds). Recent Advances in Numerical Analysis. Academic Press, New York

    Google Scholar 

  15. Lax P., and Mock M. (1978). The computation of discontinuous solutions of linear hyperbolic equations. Commun. Pure Appl. Math 31:423–430

    MATH  MathSciNet  Google Scholar 

  16. Liu X-D., Osher S., and Chan T. (1994). Weighted essentially non-oscillatory schemes. J. Comput. Phys 115:200–212

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. Majda A., and Osher S. (1977). Propagation of error into regions of smoothness for accurate difference approximations to hyperbolic equations. Commun. Pure Appl. Math. 30: 671–705

    MATH  MathSciNet  Google Scholar 

  18. Shu C.-W., and Osher S. (1988). Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys 77:439–471

    Article  MATH  MathSciNet  Google Scholar 

  19. Shu C.-W., and Wong P. (1995). A note on the accuracy of spectral method applied to nonlinear conservation laws. J. Sci. Comput 10:357–369

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigal Gottlieb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gottlieb, S., Gottlieb, D. & Shu, CW. Recovering High-Order Accuracy in WENO Computations of Steady-State Hyperbolic Systems. J Sci Comput 28, 307–318 (2006). https://doi.org/10.1007/s10915-006-9078-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-006-9078-8

Keywords

Navigation