Skip to main content
Log in

Frequency Optimized Computation Methods

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

In this paper we develop an alternative method to derive finite difference approximations of derivatives on arbitrary distrubutions of data points. The purpose is to find schemes which work for a broader range of frequencies than the usual approximations based on polynomial fitting to the expense of less accuracy for low frequencies. The numerical schemes are obtained as solutions to constrained optimizations problems in a weighted L 2-norm in the frequency domain. We examine the accuracy of these schemes and compare them with the standard approximations. To test the accuracy of the different schemes, we study dispersion errors for a simple wave equation in one space dimension. We examine the number of points per wave length which is needed in order for the relative error in the phase velocity to be below a certain bound. We also apply the technique to solve a simple two-dimensional hyperbolic equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buhmann M.D. (2000). Radial Basis Functions, Acta Numerica, 2000, Acta Numer., Vol. 9, Cambridge Univ. Press, Cambridge, pp. 1–38.

  2. Buhmann M.D. (2003). Radial Basis Functions, Cambridge Monographs on Applied and Computational Mathematics Vol 12. Cambridge University Press, Cambridge

    Google Scholar 

  3. Efraimsson G. (1998). A numerical method for the first-order wave equation with discontinuous initial data. Numer. Meth. Partial Differ. Eq. 14(3):353–365

    Article  MATH  MathSciNet  Google Scholar 

  4. Forsberg, K. (2001). Private communication, Swedish Defence Research Agency, FOI.

  5. Hixon R. (2000). Prefactored small-stencil compact schemes. J. Comput. Phys. 165(2):522–541

    Article  MATH  MathSciNet  Google Scholar 

  6. Kim J.W., and Lee D.J. (1996). Optimized compact finite difference schemes with maximal resolution. AIAA J 34(5): 887–893

    Article  MATH  Google Scholar 

  7. Nehrbass J.W., Jevtić J.O., and Lee R. (1998). Reducing the phase error for finite-difference methods without increasing the order. IEEE Trans. Antennas Propagat. 46(8):1194–1201

    Article  MATH  Google Scholar 

  8. Powell, M. J. D. (1992). The Theory of Radial Basis Function Approximation in 1990, Advances in Numerical Analysis Vol. II (Lancaster, 1990), Oxford Sci. Publ., Oxford Univ. Press, New York, pp. 105–210.

  9. Tam C.K.W. (1995). Computational aeroacoustics: Issues and methods. AIAA J 33(10):1788–1796

    Article  MATH  Google Scholar 

  10. Tam C.K.W., and Kurbatskii K.A. (2000). A wavenumber based extrapolation and interpolation method for use in conjunction with high-order finite difference schemes. J. Comput. Phys. 157(2):588–617

    Article  MATH  MathSciNet  Google Scholar 

  11. Tam, C. K. W., and Shen, H. (1993). Direct computation of nonlinear acoustic pulses using high-order finite difference schemes. AIAA paper 93–4325

  12. Tam C.K.W., and Webb J.C. (1993). Dispersion-relation-preserving finite difference schemes for computational acoustics. J. Comput. Phys. 107(2):262–281

    Article  MATH  MathSciNet  Google Scholar 

  13. Zingg, D. W. Comparison of high-accuracy finite-difference methods for linear wave propagation. SIAM J. Sci. Comput. 22(2), 476–502 (electronic).

  14. Zingg, D. W., Lomax, H., and Jurgens, H. (1993). An optimized finite-difference scheme for wave propagation problems, AIAA paper 93–0459.

  15. Zingg D.W., Lomax H., and Jurgens H. (1996). High-accuracy finite-difference schemes for linear wave propagation. SIAM J. Sci. Comput. 17(2):328–346

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Jakobsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakobsson, S. Frequency Optimized Computation Methods. J Sci Comput 26, 329–362 (2006). https://doi.org/10.1007/s10915-005-9071-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-005-9071-7

Keywords

Navigation