Skip to main content
Log in

Higher-Order Gauss–Lobatto Integration for Non-Linear Hyperbolic Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Least-squares spectral elements are capable of solving non-linear hyperbolic equations, in which discontinuities develop in finite time. In recent publications [De Maerschalck, B., 2003, http://www.aero.lr.tudelft.nl/∼bart; De Maerschalck, B., and Gerritsma, M. I., 2003, AIAA; De Maerschalck, B., and Gerritsma, M. I., 2005, Num. Algorithms, 38(1–3); 173–196], it was noted that the ability to obtain the correct solution depends on the type of linearization, Picard’s method or Newton linearization. In addition, severe under-relaxation was necessary to reach a converged solution. In this paper the use of higher-order Gauss–Lobatto integration will be addressed. When a sufficiently fine GL-grid is used to approximate the integrals involved, the discrepancies between the various linearization methods are considerably reduced and under-relaxation is no longer necessary

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bochev P.B. (1997). Analysis of least-squares finite element methods for the Navier–Stokes equations. SIAM J. Numer. Anal. 34:1817–1844

    Article  MATH  MathSciNet  Google Scholar 

  2. Bochev, P. B. (2001). Finite Element Methods Based on Least-Squares and Modified Variational Principles. Technical report, POSTECH

  3. Bochev P.B., and Gunzburger M.D. (1993). A least-squares finite element method for the Navier–Stokes equations. App. Math. Lett. 6:27–30

    Article  MathSciNet  Google Scholar 

  4. Bochev P.B., and Gunzburger M.D. (1994). Analysis of least-squares finite element methods for the Stokes problem. Math. Comput. 63:479–506

    Article  MathSciNet  Google Scholar 

  5. Bochev P.B., and Gunzburger M.D. (1995). Least-squares finite element methods for the velocity-pressure-stress formulation of the Stokes equations. Comput. Methods Appl. Mech. Engrg 126:267–287

    Article  MathSciNet  Google Scholar 

  6. Bochev P.B., and Gunzburger M.D. (1998). Finite element methods of least-squares type. SIAM Rev. 27:789–837

    Article  MathSciNet  Google Scholar 

  7. Bochev P., Cai Z., Manteuffel T.A., and McCormick S.F. (1998). Analysis of velocity-flux first order system least-squares principles for the Navier–Stokes equations: Part I. SIAM J. Numer. Anal. 35:990–1009

    Article  MathSciNet  Google Scholar 

  8. Bochev P., Manteuffel T.A., and McCormick S.F. (1999). Analysis of velocity-flux first order system least-squares principles for the Navier-Stokes equations: Part II. SIAM J. Numer. Anal. 36:1125–1144

    Article  MathSciNet  Google Scholar 

  9. Canuto C., Hussaini M.Y., Quarteroni A., and Zang T.A. (1987). Spectral methods in fluid dynamics. Springer series in Computational Physics. Springer-Verlag, Berlin, Heidelberg, London

  10. De Maerschalck, B. (2003). Space-Time Least-Squares Spectral Element Method for Unsteady Flows—Application and Evaluation for linear and non-linear hyperbolic scalar equations. http://www.aero.lr.tudelft.nl/∼bart.

  11. De Maerschalck, B., and Gerritsma, M. I. (2003). Space-time least-squares spectral elements for convection dominated unsteady flows. AIAA (accepted)

  12. De Maerschalck B., and Gerritsma M.I. (2005). The use of the Chebyshev approximation in the space-time least-squares Spectral Element Method. Num. Algorithms 38(1–3):173–196

    Article  Google Scholar 

  13. De Sterck, H., Manteuffel, T. A., McCormick, S. F., and Olson, L. (2004). Least-squares finite element methods and algebraic multigrid solvers for linear hyperbolic PDEs. SIAM J. Sci. Comput. to appear

  14. De Sterck, H., Manteuffel, T. A., McCormick, S. F., and Olson L. (2004). Numerical conservation properties of H(div)-conforming least-squares finite element methods applied to the Burgers equation. SIAM J. Sci. Comput. to appear.

  15. Jiang B.N. (1992). A least-squares finite element method for incompressible Navier-Stokes problems. Int. J. Numer. Meth. Fluids 14(7):843–859

    Article  CAS  MATH  Google Scholar 

  16. Jiang, B. N. (1998). The Least-Squares Finite Element Method, Theory and Applications in Computational Fluid Dynamics and Electromagnetics. Springer-Verlag

  17. Jiang B.N. (1998). On the least-squares method. Comput. Methods Appl. Mech. Engrg. 152:239–257

    Article  MATH  MathSciNet  Google Scholar 

  18. Jiang B.N., and Chang C.L. (1990). Least-squares finite elements for the Stokes problem. Comput. Methods Appl. Mech. Engrg. 78:297–311

    Article  MathSciNet  Google Scholar 

  19. Jiang B.N., Lin T.L., and Povinelli L.A. (1994). Large-scale computation of incompressible viscous flow by least-squares finite element method. Comput. Meth. Appl. Mech. Engrg. 114:213–231

    Article  ADS  MathSciNet  Google Scholar 

  20. Jiang B.N., and Povinelli L.A. (1990). Least-squares finite element method for fluid dynamics. Comput. Meth. Appl. Mech. Engrg. 81:13–37

    Article  MathSciNet  Google Scholar 

  21. Karniadakis, G. E., and Spencer, S. J. (1999). Spectral/hp Element Methods for CFD. Oxford University Press.

  22. Pontaza J.P., and Reddy J.N. (2003). Spectral/hp least squares finite element formulation for the Navier–Stokes equation. J. Comput. Phys. 190(2):523–549

    Article  MathSciNet  ADS  Google Scholar 

  23. Pontaza J.P., and Reddy J.N. (2004). Space-time coupled spectral/hp least squares finite element formulation for the incompressible Navier–Stokes equation. J. Comput. Phys. 197(2):418–459

    Article  ADS  MathSciNet  Google Scholar 

  24. Proot M.M.J. (2003). The Least-Squares Spectral Element Method. Ph.D. thesis, Delft University of Technology, Department of Aerospace Engineering, Delft, The Netherlands

    Google Scholar 

  25. Proot M.M.J., and Gerritsma M.I. (2002). A Least-squares spectral element formulation for the Stokes problem. J. Sci. Comput. 17:285–296

    Article  MathSciNet  Google Scholar 

  26. Proot M.M.J., and Gerritsma M.I. (2002). Least-squares spectral elements applied to the Stokes problem. J. Comp. Phys. 181:454–477

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart De Maerschalck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maerschalck, B.D., Gerritsma, M.I. Higher-Order Gauss–Lobatto Integration for Non-Linear Hyperbolic Equations. J Sci Comput 27, 201–214 (2006). https://doi.org/10.1007/s10915-005-9052-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-005-9052-x

Keywords

Navigation