Skip to main content
Log in

Efficient Low Dissipative High Order Schemes for Multiscale MHD Flows, II: Minimization of ∇·B Numerical Error

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

An adaptive numerical dissipation control in a class of high order filter methods for compressible MHD equations is systematically discussed. The filter schemes consist of a divergence-free preserving high order spatial base scheme with a filter approach which can be divergence-free preserving depending on the type of filter operator being used, the method of applying the filter step, and the type of flow problem to be considered. Some of these filter variants provide a natural and efficient way for the minimization of the divergence of the magnetic field (∇·B) numerical error in the sense that commonly used divergence cleaning is not required. Numerical experiments presented emphasize the performance of the ∇·B numerical error. Many levels of grid refinement and detailed comparison of the filter methods with several commonly used compressible MHD shock-capturing schemes will be illustrated

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brackbill J.U., Barnes D.C. (1980). Note: The effect of nonzero ∇·B on the numerical solution of the magnetohydrodynamic equations. J. Comput. Phys 35:426–430

    Article  MATH  MathSciNet  Google Scholar 

  2. Brio M., Wu C.C. (1998). An upwind differencing scheme for the equations of ideal magnetohydrodynamics. J. Comput. Phys 75:400–422

    Article  MathSciNet  Google Scholar 

  3. Cargo P., Gallice G. (1997). Roe matrices for ideal MHD and systematic construction of Roe matrices for systems of conservation laws. J. Comput. Phys 136:446–466

    Article  MATH  MathSciNet  Google Scholar 

  4. Dedner A., Kemm F., Kröner D., Munz C.-D., Schnitzer T., Wesenberg M. (2002). Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys 175:645–673

    Article  MATH  MathSciNet  Google Scholar 

  5. Dai W., Woodward P.R. (1998). A simple finite difference scheme for multidimensional magnetohydrodynamical equations. J. Comput. Phys 142:331–369

    Article  MathSciNet  MATH  Google Scholar 

  6. Dai W., Woodward P.R. (1998). On the divergence-free condition and conservation laws in numerical simulations for supersonic magnetohydrodynamic flows. Astrophys. J. 494:317–335

    Article  Google Scholar 

  7. De Sterck H. (2001). Multi-dimensional upwind constrained transport on unstructured grids for shallow water magnetohydrodynamics. AIAA Paper 2001–2623

  8. Evans C.R., Hawley J.F. (1988). Simulation of magnetohydrodynamic flows: a constrained transport method. Astrophys. J 332:659–677

    Article  Google Scholar 

  9. Gallice, G. (1997). Systéme dÉuler-Poisson, Magnétohydrodynamique et Schemeas de Roe:PhD Thesis, L’Université Bordeaux I.

  10. Gallice, G. Resolution numerique des equations de la magnetohydrodynamique ideale bidimensionnelle. Actes du workshop Méthodes Numériques pour la M.H.D., CIRM (Luminy), December 4–5, 1995

  11. Godunov S.K. (1972). Symmetric form of the equations of magnetohydrodynamics. Num. Methods Mech Continuum Medium 13(1):26–34

    Google Scholar 

  12. Harten A., Hyman J.M. (1983). A self-adjusting grid for the computation of weak solutions of hyperbolic conservation laws. J. Comput. Phys 50:235–269

    Article  MATH  MathSciNet  Google Scholar 

  13. Jiang G.-S., Shu C.-W. (1996). Efficient implementation of weighted ENO schemes. J. Comput. Phys 126:202–228

    Article  MATH  MathSciNet  Google Scholar 

  14. Nordstrom J., Carpenter M.H. (1999). Boundary and interface conditions for high-order finite-difference schemes applied to the Euler and Navier–Stokes equations. J. Comput. Phys 148:621–645

    Article  MathSciNet  Google Scholar 

  15. Olsson P. (1995). Summation by parts, projections and stability. I. Math. Comp 64:1035–1065

    Article  MATH  MathSciNet  Google Scholar 

  16. Olsson, P. (1995). Summation by parts, projections and stability. III. RIACS Technical Report 95-06, NASA Ames Research Center.

  17. Olsson P., and Oliger, J. (1994). Energy and maximum norm estimates for nonlinear conservation laws. RIACS Technical Report 94.01.

  18. Orszag S.A., Tang C.M. (1979). Small-scale structure of two-dimensional magnetohydrodynamic turbulence. J. Fluid Mech 90:129–143

    Article  Google Scholar 

  19. Powell, K. G. (1994). An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension). ICASE-Report 94-24, NASA Langley Research Center, April 1994.

  20. Powell K.G., Roe P.L., Linde T.J., Gombosi T.I., De Zeeuw D.L. (1999). A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys 154:284–309

    Article  MATH  MathSciNet  Google Scholar 

  21. Sjögreen B. (1995). High order centered difference methods for the compressible Navier-Stokes equations. J. Comput. Phys 117:67–78

    Article  MATH  MathSciNet  Google Scholar 

  22. Sjögreen B., Yee H.C. (2004). Multiresolution wavelet based adaptive numerical dissipation control for shock-turbulence computation. RIACS Technical Report TR01.01, NASA Ames research center (Oct 2000); also. J. Sci. Comput. 20:211–255

    Article  MATH  MathSciNet  Google Scholar 

  23. Sjögreen, B., and Yee, H. C. (2003). Grid convergence of high order methods for multiscale complex unsteady viscous compressible flows. RIACS Technical Report TR01.06, April, 2001, NASA Ames research center; AIAA 2001-2599. In Proceedings of the 15th AIAA CFD Conference, June 11-14, 2001, Anaheim, CA., also, J. Comput. Phys 185:1–26.

  24. Sjögreen, B., and Yee, H. C. (2003). Low dissipative high order numerical simulations of supersonic reactive flows. RIACS Technical Report TR01-017, NASA Ames Research Center (May 2001); In Proceedings of the ECCOMAS Computational Fluid Dynamics Conference 2001, Swansea, Wales, UK, September 4-7, 2001; also, Int. J. Num. Meth. fluids 43:1221–1238.

  25. Sjögreen, B., and Yee, H. C. (2002). Analysis of high order difference methods for multiscale complex compressible flows. In Proceedings of the 9th International Conference on Hyperbolic Problems, March 25–29, Pasadena, CA.

  26. Sjögreen, B., and Yee, H. C. (2003). Efficient low dissipative high order schemes for multiscale MHD flows, I: basic theory. AIAA 2003-4118. In Proceedings of the 16th AIAA/CFD Conference, June 23–26, Orlando, Fl.

  27. Sjögreen, B., and Yee, H. C. (2005). Efficient low dissipative high order schemes for multiscale MHD flows, III: curvilinear grid simulations. RIACS Technical Report, NASA Ames Research Center.

  28. Tóth G. (2000). The div B=0 constraint in shock-capturing magnetohydrodynamic codes. J. Comput. Phys 161:605–652

    Article  MATH  MathSciNet  Google Scholar 

  29. Vinokur, M. (1996). A rigorous derivation of the MHD equations based only on Faraday’s and Ampére’s Laws. Presentation at LANL MHD Workshop on ∇·B Cleaning, August.

  30. Vinokur, M., and Yee, H. C. (2002). Extension of efficient low dissipative high order schemes for 3-D curvilinear moving grids. NASA TM 209598, June 2000; also, In Frontiers of Computational Fluid Dynamics, World Scientific, Caughey, D. A, and Hafez, M.M.(eds), 129–164.

  31. Yee, H. C. (1989). A class of high-resolution explicit and implicit shock-capturing methods. VKI Lecture Series 1989–04, March 6–10, also NASA TM-101088, February 1989.

  32. Yee H.C., Sandham N.D., Djomehri M.J. (1999). Low dissipative high order shock-capturing methods using characteristic-based filters. J. Comput. Phys 150:199–238

    Article  MATH  MathSciNet  Google Scholar 

  33. Yee H.C., Vinokur M., Djomehri M.J. (2000). Entropy splitting and numerical dissipation. J. Comput. Phys 162:33–81

    Article  MATH  MathSciNet  Google Scholar 

  34. Yee, H. C., and Sjögreen, B. (2002). Designing adaptive low dissipative high order schemes for long-time integrations. In Turbulent Flow Computation, Drikakis, D., and Geurts, B., Kluwer Academic Publisher; also RIACS Technical Report TR01-28, December 2001.

  35. Yee, H. C., and Sjögreen, B. (2003). Divergence free high order filter methods for the compressible MHD equations. In Proceedings of the International Conference on High Performance Scientific Computing, March 10–14, Hanoi, Vietnam.

  36. Yee, H. C., and Sjögreen, B. (2003). Efficient low dissipative high order schemes for multiscale MHD flows, II: minimization of ▽ . B numerical error. RIACS Technical Report TR03.10, NASA Ames Research Center.

  37. Yee, H. C., and Sjögreen, B. (2004). Adaptive numerical dissipation control in high order schemes for multi-D non-ideal MHD. In Proceedings of the ICCFD3, July 12–16, Toronto, Canada.

  38. Yee H.C., Sjögreen B. (2004). Nonlinear filtering and limiting in high order methods for ideal and Non-ideal MHD. In Proceedings of the ICOSAHOM04, June 21–25. Brown University, Providence,RI,

    Google Scholar 

  39. Yee K.S. (1966). Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propagat 14:302–307

    Article  Google Scholar 

  40. Zachary A.L., Malagoli A., Colella P. (1994). A higher-order Godunov method for multidimensional ideal magnetohydrodynamics. SIAM J. Sci. Comput 15:263–284

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. C. Yee.

Additional information

A condensed version appears in the Proceedings of the International Conference on High Performance Scientific Computing, March 10-14, 2003, Hanoi, Vietnam. This is a revised version of a longer internal report, Feb. 19, 2004. The longer internal report was published as a RIACS Technical Report TR03.10, July 2003, NASA Ames Research Center

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yee, H.C., Sjögreen, B. Efficient Low Dissipative High Order Schemes for Multiscale MHD Flows, II: Minimization of ∇·B Numerical Error. J Sci Comput 29, 115–164 (2006). https://doi.org/10.1007/s10915-005-9004-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-005-9004-5

Keywords

Navigation