Skip to main content
Log in

A Spectral Method for the Time Evolution in Parabolic Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Numerical time propagation of linear parabolic problems is commonly performed by Taylor expansion based schemes, such as Runge–Kutta. However, explicit schemes of this type impose a stringent stability restriction on the time step when the space discretization matrix is poorly conditioned. Thus the computational work required for integration over a long and fixed time interval is controlled by stability rather than by accuracy of the scheme. We develop an improved time evolution scheme based on a new Chebyshev series expansion for solving time-dependent inhomogeneous parabolic initial-boundary value problems in which the stability condition is relaxed. Spectral accuracy of the time evolution scheme is achieved. Additionally, the approximation derived here can be useful for solving quasi-linear parabolic evolution problems by exponential time differencing methods

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz M., Stegun I.A. (1972). Handbook of Mathematical Functions. Dover, NY

    MATH  Google Scholar 

  2. Amos D.E., Burgmeier J.W. (1973). Computation with three-term, linear, nonhomogeneous recursion relations. SIAM Rev 15:335–351

    Article  MATH  MathSciNet  Google Scholar 

  3. Beylkin G., Keiser J.M., Vozovoi L. (1998). A new class of time discretization schemes for the solution of nonlinear PDEs. J. Comp. Phys 147:362–387

    Article  MATH  MathSciNet  Google Scholar 

  4. Clenshaw C.W., Curtis A.R. (1960). A method for numerical integration on an automatic computer. Numer. Math 2: 197–205

    Article  MATH  MathSciNet  Google Scholar 

  5. Cox S.M., Matthews P.C. (2002). Exponential time differencing for stiff systems. J. Comp. Phys 176:430–455

    Article  MATH  MathSciNet  Google Scholar 

  6. Friedman A. (1964). Partial Differential Equations of Parabolic Type. Prentice-Hall, NJ.

  7. Gardiner C.W. (1990). Handbook of Stochastic Methods. Springer-Verlag, NY

    MATH  Google Scholar 

  8. Gottlieb D., Orszag S.A. (1977). Numerical Analysis of Spectral Methods: Theory and Applications. SIAM, Philadelphia

    MATH  Google Scholar 

  9. Gottlieb D., Turkel E. (1983). Spectral Methods for Time-Dependent Partial Differential Equations. In: Brezzi F (eds). Lecture Notes in Mathematics Vol 1127. Springer, Berlin, pp. 115–155

    Google Scholar 

  10. Gottlieb D., Lustman L. (1983). The spectrum of the Chebyshev collocation operator for the heat equation. SIAM J. Numer. Anal 20: 909–921

    Article  MATH  MathSciNet  Google Scholar 

  11. Holcman, D., and Schuss, Z. Modelling calcium dynamics in dendritic spines. SIAM J. Appl. Math. (in press).

  12. Meinardus G. (1967). Approximation of Functions: Theory and Numerical Methods. Springer-Verlag, NY

    MATH  Google Scholar 

  13. Trefethen L.N., Trummer M.R. (1987). An instability phenomenon in spectral methods. SIAM J. Numer. Anal 24:1008–1023

    Article  MATH  MathSciNet  Google Scholar 

  14. Trefethen L.N. (1999). Computation of pseudospectra. Acta Numerica 8: 247–295

    Article  MATH  MathSciNet  Google Scholar 

  15. Rainville E.D. (1967). Special Functions. The Macmillan Company, NY

    MATH  Google Scholar 

  16. Schuss Z. (1980). Theory and Applications of Stochastic Differential Equations. Wiley, NY

    MATH  Google Scholar 

  17. Tal-Ezer H. (1989). Spectral methods in time for parabolic problems. SIAM J. Numer. Anal 26:1–11

    Article  MATH  MathSciNet  Google Scholar 

  18. Thacher H.C. (1964). Conversion of a power to a series of Chebyshev polynomials. Comm. ACM 7: 181–182

    Article  MATH  MathSciNet  Google Scholar 

  19. Toh K.-C., Trefethen L.N. (1999). The Kreiss matrix theorem on a general complex domain. SIAM J. Matrix Anal. Appl 21: 145–165

    Article  MATH  MathSciNet  Google Scholar 

  20. Wilmott P., Dewynne J., Howison S. (1995). Option Pricing, Mathematical Models and Computation, students ed., Oxford Financial Press

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Y. Suhov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suhov, A.Y. A Spectral Method for the Time Evolution in Parabolic Problems. J Sci Comput 29, 201–217 (2006). https://doi.org/10.1007/s10915-005-9001-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-005-9001-8

Keywords

Navigation