Skip to main content
Log in

Numerical Convergence of a Parameterisation Method for the Solution of a Highly Anisotropic Two-Dimensional Elliptic Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Highly anisotropic two-dimensional elliptic problems lead to severe numerical difficulties. In this paper, starting from a simple finite volume scheme, we present a parameterisation method that allows us to obtain the solution even if the anisotropy ratio is very large. We derive a formal asymptotic limit of the two-dimensional anisotropic problem, in the case where the anisotropy ratio goes to infinity. This formal limit is used as a reference, and we show that the parameterisation method gives similar results, whereas the finite volume scheme fails to give an accurate solution. Numerical results are given, which indicate important parameters to be considered in order to obtain a good precision

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ababou R. (1991). Approaches to Large Scale Unsaturated Flow in Heterogeneous, Stratified, and Fractured Geologic Media. U.S. Nuclear Regulatory commission report, NUREG/CR-5473

  2. Ababou R., Gelhar L.W., Hempel C. (1992). Serial and parallel performance on large matrix systems. Cray channels

  3. Brezzi F., Marini L.D., Pietra P. (1988). Numerical Simulation of semiconductor devices. Istituto di analisi numerica, pubblicazioni n.608

  4. P.G. Ciarlet (1997) Mathematical Elasticity, vol. II: Theory of plates North Holland Amsterdam

    Google Scholar 

  5. P.I. Crumpton G.J. Shaw A.F. Ware (1995) ArticleTitleDiscretisation and multigrid solution of elliptic equations with mixed derivative terms and strongly discontinuous coefficients J. Comput. Phys. 166 343–358 Occurrence Handle95j:65162

    MathSciNet  Google Scholar 

  6. R. Eymard T. Gallouët R. Herbin (2000) Finite volume methods P.G. Ciarlet J.L Lions (Eds) Handbook of Numerical Analysis Vol VII. North Holland Amsterdam 713–1020

    Google Scholar 

  7. Garrigues L. (1998). Modélisation d’un propulseur á plasma stationnaire pour satellites. thése de doctorat de l’université Paul Sabatier, Toulouse (France)

  8. L. Giraud R.S. Tuminaro (1999) ArticleTitleSchur complement preconditioners for anisotropic problems IMA J. Numer. Anal. 19 1–18 Occurrence Handle10.1093/imanum/19.1.1 Occurrence Handle1670756

    Article  MathSciNet  Google Scholar 

  9. Ph. Guillaume M. Masmoudi (1994) ArticleTitleComputation of high order derivatives in optimal shape design Numer. Math. 67 IssueID2 231–250 Occurrence Handle10.1007/s002110050025 Occurrence Handle94m:49057

    Article  MathSciNet  Google Scholar 

  10. Ph. Guillaume M. Masmoudi (1997) ArticleTitleSolution to the time-harmonic Maxwell’s equations in a waveguide, use of higher order derivatives for solving the discrete problem SIAM J. Numer. Anal. 34 IssueID4 1306–1330 Occurrence Handle10.1137/S0036142994272076 Occurrence Handle98h:78016

    Article  MathSciNet  Google Scholar 

  11. Ph. Guillaume M. Masmoudi A. Zeglaoui (2002) ArticleTitleFrom compressible to incompressible materials via an asymptotic expansion Numer. Math. 91 IssueID4 649–673 Occurrence Handle10.1007/s002110100347 Occurrence Handle2003g:74012

    Article  MathSciNet  Google Scholar 

  12. W. Hackbusch (1992) Elliptic Differential Equations, theory and numerical treatment Springer-Verlag Berlin

    Google Scholar 

  13. B.N. Khoromskij G. Wittum (1999) ArticleTitleRobust Schur complement method for strongly anisotropic elliptic equations Numer. Linear Algebra Appl. 6 621–653 Occurrence Handle10.1002/(SICI)1099-1506(199912)6:8<621::AID-NLA164>3.0.CO;2-F Occurrence Handle2000k:65063

    Article  MathSciNet  Google Scholar 

  14. Latocha V. (2001). Deux problèmes en transport des particules chargées intervenant dans la modélisation d’un propulseur ionique. thèse de doctorat de l’INSA Toulouse,INSA de Toulouse (France)

  15. Lions J.L., Magenes E. (1968). Problèmes aux limites non homogènes et applications, Dunod

  16. J. Molenaar (1995) ArticleTitleAdaptive multigrid applied to a bipolar transistor problem Appl. Numer. Math. 17 IssueID1 61–83 Occurrence Handle10.1016/0168-9274(94)00061-K Occurrence Handle0822.65114 Occurrence Handle1335518

    Article  MATH  MathSciNet  Google Scholar 

  17. Nayfeh A. (1973). Perturbation methods, Wiley-interscience

  18. S. Selberherr (1984) Analysis and simulation of semiconductor devices Springer-Verlag Berlin

    Google Scholar 

  19. A. Sili (1999) ArticleTitleAsymptotic behaviour of the solutions of monotone problems in flat cylinders Asympt. Anal. 19 IssueID1 19–33 Occurrence Handle0937.35011 Occurrence Handle2000d:35017

    MATH  MathSciNet  Google Scholar 

  20. D. Thangaraj A. Nathan (1998) ArticleTitleA rotated monotone difference scheme for the two dimensional anisotropic drift diffusion equation J. Comput. Phys. 145 445–461 Occurrence Handle10.1006/jcph.1998.6033 Occurrence Handle99d:65256

    Article  MathSciNet  Google Scholar 

  21. Zeglaoui A. (2000). Approximation de problémes singuliers par un développement asymptotique. thése de doctorat, INSA de Toulouse (France)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Guillaume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guillaume, P., Latocha, V. Numerical Convergence of a Parameterisation Method for the Solution of a Highly Anisotropic Two-Dimensional Elliptic Problem. J Sci Comput 25, 423–444 (2005). https://doi.org/10.1007/s10915-004-4805-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-004-4805-5

Keywords

Navigation