Skip to main content

Advertisement

Log in

From the “Brazuca” ball to octahedral fullerenes: their construction and classification

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

A simple cut-and-patch method is presented for the construction and classification for fullerenes belonging to the octahedral point groups, O or \(O_h\). In order to satisfy the symmetry requirement of the octahedral group, suitable numbers of four- and eight-member rings, in addition to the hexagons and pentagons, have to be introduced. An index consisting of four integers is introduced to specify an octahedral fullerenes. However, to specify an octahedral fullerene uniquely, we also found certain symmetry rules for these indices. Based on the transformation properties under the symmetry operations that an octahedral fullerene belongs to, we can identify four structural types of octahedral fullerenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adidas Telstar. Wikipedia: The Free Encyclopedia. Wikimedia Foundation, Inc. Accessed 17 July 2014

  2. D. Kotschick, The topology and combinatorics of soccer balls. Am. Sci. 94, 350–357 (2005)

    Article  Google Scholar 

  3. Adidas Brazuca. Wikipedia: The Free Encyclopedia. Wikimedia Foundation, Inc. Accessed 17 June 2014

  4. S. Hong, T. Asai, Effect of panel shape of soccer ball on its flight characteristics. Sci. Rep. 4(5068), 1–7 (2014)

    Google Scholar 

  5. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, \(\text{ C }_{60}\): Buckminsterfullerene. Nature 318, 162–163 (1985)

    Article  CAS  Google Scholar 

  6. P.W. Fowler, D.E. Manolopoulos, An Atlas of Fullerenes (Dover Publications, New York, 2007)

    Google Scholar 

  7. M. Goldberg, A Class of multi-symmetric polyhedra. Tohoku Math. J. 43, 104–108 (1937)

    Google Scholar 

  8. D.L.D. Caspar, A. Klug, Physical principles in the construction of regular viruses. Cold Spring Harb. Symp. Quant. Biol. 27, 1–24 (1962)

    Article  CAS  Google Scholar 

  9. D.E. Manolopoulos, P.W. Folwer, Molecular graphs, point groups, and fullerenes. J. Chem. Phys. 96, 7603–7614 (1992)

    Article  CAS  Google Scholar 

  10. P.W. Fowler, J.E. Cremona, J.I. Steer, Systematics of bonding in non-icosahedral carbon clusters. Theor. Chim. Acta 73, 1–26 (1988)

    Article  CAS  Google Scholar 

  11. S. Jendrol’, F. Kardoš, On octahedral fulleroids. Discret. Appl. Math. 155, 2181–2186 (2007)

    Article  Google Scholar 

  12. P.W. Fowler, D.E. Manolopoulos, D.B. Redmond, R.P. Ryan, Possible symmetries of fullerene structures. Chem. Phys. Lett. 202, 371–378 (1993)

    Article  CAS  Google Scholar 

  13. P.W. Fowler, K.M. Rogers, Spiral codes and Goldberg representations of icosahedral fullerenes and octahedral analogues. J. Chem. Inf. Comput. Sci. 41, 108–111 (2001)

    Article  CAS  Google Scholar 

  14. A.-C. Tang, F.-Q. Huang, Electronic structures of octahedral fullerenes. Chem. Phys. Lett. 263, 733–741 (1996)

    Article  CAS  Google Scholar 

  15. S. Compernolle, A. Ceulemans, \(\pi \) Electronic structure of octahedral trivalent cages consisting of hexagons and squares. Phys. Rev. B 71, 205407 (2005)

    Article  Google Scholar 

  16. S. Compernolle, A. Ceulemans, Frontier orbitals of trivalent cages: (3,6) cages and (4,6) cages. J. Phys. Chem. A 109, 2689–2697 (2005)

    Article  CAS  Google Scholar 

  17. B.I. Dunlap, R. Taylor, Octahedral \(\text{ C }_{48}\) and uniform strain. J. Phys. Chem. 98, 11018–11019 (1994)

    Article  CAS  Google Scholar 

  18. H.-S. Wu, H.-J. Jiao, What is the most stable \(\text{ B }_{24}\text{ N }_{24}\) fullerene? Chem. Phys. Lett. 386, 369–372 (2004)

    Article  CAS  Google Scholar 

  19. V. Barone, A. Koller, G.E. Scuseria, Theoretical nitrogen NMR chemical shifts in octahedral boron nitride cages. J. Phys. Chem. A 110, 10844–10847 (2006)

    Article  CAS  Google Scholar 

  20. R.A. LaViolette, M.T. Benson, Density functional calculations of hypothetical neutral hollow octahedral molecules with a 48-atom framework: Hydrides and oxides of boron, carbon, nitrogen, aluminum, and silicon. J. Chem. Phys. 112, 9269–9275 (2000)

    Article  CAS  Google Scholar 

  21. K.M. Rogers, P.W. Fowler, G. Seifert, Chemical versus steric frustration in boron nitride heterofullerene polyhedra. Chem. Phys. Lett. 332, 43–50 (2000)

    Article  CAS  Google Scholar 

  22. R.R. Zope, T. Baruah, M.R. Pederson, B.I. Dunlap, Electronic structure, vibrational stability, infra-red, and Raman spectra of \(\text{ B }_{24}\text{ N }_{24}\) cages. Chem. Phys. Lett. 393, 300–304 (2004)

    Article  CAS  Google Scholar 

  23. C. Chuang, Y.-C. Fan, B.-Y. Jin, Generalized classification scheme of toroidal and helical carbon nanotubes. J. Chem. Inf. Model. 49, 361–368 (2009)

    Article  CAS  Google Scholar 

  24. C. Chuang, Y.-C. Fan, B.-Y. Jin, Dual Space Approach to the Classification of Toroidal Carbon Nanotubes. J. Chem. Inf. Model. 49, 1679–1686 (2009)

    Article  CAS  Google Scholar 

  25. C. Chuang, B.-Y. Jin, Systematics of high-genus fullerenes. J. Chem. Inf. Model. 49, 1664–1668 (2009)

    Article  CAS  Google Scholar 

  26. C. Chuang, Y.-C. Fan, B.-Y. Jin, Comments on structural types of toroidal carbon nanotubes. J. Chin. Chem. Soc. 60, 949–954 (2013)

    Article  CAS  Google Scholar 

  27. C. Chuang, Y.-C. Fan, B.-Y. Jin, Systematics of Toroidal Helically-coiled Carbon Nanotubes, High-genus Fullerenes, and Other Exotic Graphitic Materials. Procedia. Eng. 14, 2373–2385 (2011)

    Article  CAS  Google Scholar 

  28. C. Chuang, B.-Y. Jin, Classification of hypothetical doubly and triply periodic porous graphitic structures by tilings of neck-like units. J. Math. Chem 47, 1077–1084 (2010)

    Article  CAS  Google Scholar 

  29. S. Fujita, Symmetry and Combinatorial Enumeration in Chemistry (Springer, New York, 1991)

    Book  Google Scholar 

  30. D. Tománek, Guide Through the Nanocarbon Jungle: Buckyballs, Nanotubes, Graphene and Beyond, IOP Concise Physics series (Morgan & Claypool Publishers, San Rafael, 2014)

    Book  Google Scholar 

  31. K. Delp, B. Thurston, Playing With Surfaces: Spheres, Monkey Pants, and Zippergons. in Proceedings of Bridges 2011: Mathematics, Music, Art, Architecture, Culture 2011, pp. 1–8

  32. A. Šiber, Shapes and energies of giant icosahedral fullerenes. Euro. Phys. J. B 53, 395–400 (2006)

    Article  Google Scholar 

  33. E.U. Yong, D.R. Nelson, L. Mahadevan, Elastic platonic shells. Phys. Rev. Lett. 111(177801), 1–5 (2013)

    Google Scholar 

Download references

Acknowledgements

The research was supported by the Ministry of Science and Technology, Taiwan. B.-Y. Jin thanks Center for Quantum Science and Engineering, and Center of Theoretical Sciences of National Taiwan University for partial financial supports. We also wish to thank Chern Chuang and Prof. Yuan-Chung Cheng for useful discussions and comments on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bih-Yaw Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, YJ., Jin, BY. From the “Brazuca” ball to octahedral fullerenes: their construction and classification. J Math Chem 55, 873–886 (2017). https://doi.org/10.1007/s10910-016-0719-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-016-0719-3

Keywords

Navigation