Skip to main content

Advertisement

Log in

Effective interactions and block diagonalization in quantum-mechanical problems

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Many models of condensed-matter systems have interactions with unexpected features: for example, exclusively distant-neighbor spin–orbit interactions. On first inspection these interactions seem physically questionable in view of the basis states used. However, such interactions can be physically reasonable if the model is an effective one, in which the basis states are not exactly as described, but instead include components of states removed from the problem. Mathematically, an effective model results from partitioning the Hamiltonian matrix, which can be accomplished by energy-dependent or energy-independent methods. We examine effective models of both types, with a special emphasis on energy-independent approaches. We show that an appropriate choice of basis makes the partitioning simpler and more accurate. We illustrate the method by calculating the spin–orbit splitting in graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 146802 (2005)

    Article  CAS  Google Scholar 

  2. P.O. Löwdin, J. Math. Phys. 3, 969 (1962)

    Article  Google Scholar 

  3. P.O. Löwdin, J. Chem. Phys. 19, 1396 (1951)

    Article  Google Scholar 

  4. P.O. Löwdin, Phys. Rev. 139, A357 (1965)

    Article  Google Scholar 

  5. D. Yao, J. Shi, Am. J. Phys. 68, 278 (2000)

    Article  Google Scholar 

  6. P. Surjan, A. Szabados, Int. J. Quantum Chem. 90, 20 (2002)

    Article  CAS  Google Scholar 

  7. Y. Yao, F. Ye, X.-L. Qi, S.C. Zhang, Z. Fang, Phys. Rev. B 75, 041401 (2007)

    Article  Google Scholar 

  8. L.M. Zhang, M.M. Fogler, D.P. Arovas, Phys. Rev. B 84, 075451 (2011)

    Article  Google Scholar 

  9. S. Konschuh, M. Gmitra, J. Fabian, Phys. Rev. B 82, 245412 (2010)

    Article  Google Scholar 

  10. G. Grosso, S. Moroni, G.P. Parravicini, Phys. Rev. B 40, 12328 (1989)

    Article  CAS  Google Scholar 

  11. F. Constantinescu, E. Magyari, Problems in Quantum Mechanics, Trans. By V.V. Grecu, Ed. by J.A. Spiers (Pergamon, New York, 1985), Ch. I., Pr. 27

  12. J.E. Campbell, Proc. Lond. Math. Soc. 28, 381 (1896)

    Article  Google Scholar 

  13. H.F. Baker, Proc. Lond. Math. Soc. 34, 347 (1901)

    Article  Google Scholar 

  14. D. Sinha, S.K. Mukhopadhyay, R. Chaudhuri, D. Mukherjee, Chem. Phys. Lett. 154, 544 (1989)

    Article  Google Scholar 

  15. I. Lindgren, J. Phys. B At. Mol. Phys. 7, 2441 (1974)

    Article  CAS  Google Scholar 

  16. P. Szakacs, P.R. Surjan, D. Mukherjee, S. Das, Phys. Rev. B 77, 193407 (2008)

    Article  Google Scholar 

  17. T.B. Boykin, M. Luisier, G. Klimeck, X. Jiang, N. Kharche, Y. Zhou, S.K. Nayak, J. Appl. Phys. 109, 104304 (2011)

    Article  Google Scholar 

  18. J.C. Slater, G.F. Koster, Phys. Rev. 94, 1498 (1954)

    Article  CAS  Google Scholar 

  19. W.A. Harrison, Electronic Structure (Dover, New York, 1989)

    Google Scholar 

  20. W.A. Harrison, Elementary Electronic Structure (World Scientific, New Jersey, 1999)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy B. Boykin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boykin, T.B. Effective interactions and block diagonalization in quantum-mechanical problems. J Math Chem 52, 1599–1609 (2014). https://doi.org/10.1007/s10910-014-0339-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-014-0339-8

Keywords

Mathematics Subject Classification

Navigation