Skip to main content
Log in

Canonical labels for protein spots of proteomics maps

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

We consider the problem of canonical labeling for a class of maps, which include proteomics maps, which consist of a set of vertices or protein spots. If this problem is solved and followed, different laboratories studying proteomics maps will arrive at the same numbering of spots, which would facilitate comparisons of data from different sources. In addition, the proposed canonical numberings of protein spots would allow compiling a catalog of proteomics maps just as canonical labeling allows making catalogs graphs, or molecules, and other canonically labeled systems, which would make search for similar sets of maps very efficient. We approach the problem by modifying the algorithm of Jeffrey for graphical representation of DNA based on the chaos game. Graphical representation of DNA as a chaos game map has an important property in that this representation allows one to assign sequential labels to spots in a DNA map. We have modified the approach for sequential labeling of chaos game map representations to graphical representation of any tabular data, such as listing of (x, y) coordinates of protein spots of proteomics maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.C. Read, D.G. Corneil, The graphs isomoprhism desease. J. Gr. Theory 1, 339–363 (1977)

    Article  Google Scholar 

  2. M. Randić, On the recognition of identical graphs representing molecular topology. J. Chem. Phys. 60, 3920–3928 (1974)

    Article  Google Scholar 

  3. M. Randić, On canonical numbering of atoms in a molecule and graph isomorphism. J. Chem. Inf. Comput. Sci. 17, 171–180 (1977)

    Article  Google Scholar 

  4. M. Randić, Mathematical methods in contemporary chemistry, in Similarity Methods of Interest in Chemistry, ed. by S. Kuchanov (Gordon & Breach Publ. Inc., New York, 1995), pp. 1–99

    Google Scholar 

  5. T. Pisanski, M. Randić, Bridges between geometry and graph theory, in Geometry at Work, ed. by C.A. Gorini (Math. Assoc. America, Washington, DC, 2000), pp. 174–194

    Google Scholar 

  6. J.V. Knop, W.R. Müller, K. Szymansky, N. Trinajstić, Computer Generation of Certain Classes of Molecules (SKTH / Kemija u Industriji, Zagreb, 1985)

    Google Scholar 

  7. M. Randić, A graph theoretical basis for structural chemistry. 1. Structures based on trivalent graph with n = 10 vertices. Acta Cryst. A 34, 275–282 (1978)

    Article  Google Scholar 

  8. M. Randić, N. Lerš, D. Vukičević, D. Plavšić, B.D. Gute, S.C. Basak, Canonical labeling of proteome maps. J. Proteome Res. 4, 1347–1352 (2005)

    Article  Google Scholar 

  9. M.F. Barnsley, Fractals Everywhere, 2nd edn. (Academic Press, Boston, 1993)

    Google Scholar 

  10. H.J. Jeffrey, Chaos game representation of gene structure. Nucleic Acid Res. 18, 2163–2170 (1990)

    Article  CAS  Google Scholar 

  11. M. Randić, J. Zupan, A.T. Balaban, D. Vikić-Topić, D. Plavšić, Graphical representation of proteins. Chem. Rev. 111, 790–862 (2011)

    Article  Google Scholar 

  12. W.J. Wiswesser, How the WLN began in 1949 and how it might be in 1999. J. Chem. Inf. Comput. Sci. 22, 88–93 (1982)

    Article  CAS  Google Scholar 

  13. W.J. Wiswesser, Historical development of chemical notation. J. Chem. Inf. Comput. Sci. 25, 258–263 (1985)

    Article  CAS  Google Scholar 

  14. D. Weininger, A. Weininger, J.L. Weininger, SMILES, a modern chemical language and information system. Chem. Des. Autom. News 1, 2–15 (1986)

    Google Scholar 

  15. D. Weininger, Chemical language and information system. Introduction to methodology end encoding rules. J. Chem. Inf. Comput. Sci. 28, 31–36 (1988)

    Article  CAS  Google Scholar 

  16. D. Weininger, A. Weininger, J.L. Weininger, SMILES 2. Algorithm for generation of unique SMILES notation. J. Chem. Inf. Comput. Sci. 29, 97–101 (1989)

    Article  CAS  Google Scholar 

  17. R.G.A. Bone, M.A. Firth, R.A. Sykes, SMILES extensions for pattern matching and molecular transformations: applications to chemo informatics. J. Chem. Inf. Comput. Sci. 39, 846–860 (1999)

    Article  CAS  Google Scholar 

  18. A.T. Balaban, F. Harary, Chemical Graphs V. Enumeration and proposed nomenclature of benzenoid cata-condensed polycyclic aromatic hydrocarbons. Tetrahedron 24, 2505–2516 (1968)

    Article  CAS  Google Scholar 

  19. R.C. Read, A new system for designation of chemical compounds. I. Theoretical preliminaries and the coding of acyclic compounds. J. Chem. Inf. Comput. Sci. 23, 135–149 (1983)

    Article  CAS  Google Scholar 

  20. R.C. Read, A new system for designation of chemical compounds. 2. Coding of cyclic compounds. J. Chem. Inf. Comput. Sci. 25, 116–128 (1985)

    Article  CAS  Google Scholar 

  21. N. Lozac’h, A.L. Goodson, W.H. Powel, Die nodal nomenklature—Allgemeine Prinzipen. Angew. Chem. 91, 951–964 (1979)

    Article  Google Scholar 

  22. A.L. Goodson, Graph-based chemical nomenclature. 1. Historical background and discussion. J. Chem. Inf. Comput. Sci. 20, 167–172 (1980)

    Article  CAS  Google Scholar 

  23. A.L. Goodson, Graph-based chemical nomenclature. 2. Incorporation of graph-theoretical principles into Taylor’s nomenclature proposal. J. Chem. Inf. Comput. Sci. 20, 172–176 (1980)

    Article  CAS  Google Scholar 

  24. A.L. Goodson, Application of graph-based chemical nomenclature to theoretical and preparative chemistry. Croat. Chem. Acta 56, 315–324 (1983)

    CAS  Google Scholar 

  25. N. Trinajstić, Ž. Jeričević, J.V. Knop, W.R. Müller, K. Szymanski, Computer generation of isomeric structures. Pure Appl. Chem. 55, 370–390 (1983)

    Google Scholar 

  26. J.V. Knop, W.R. Müller, K. Szymanski, N. Trinajstić, Computer Generation of Some Classes of Molecules (SKTH Press, Zagreb, 1985)

    Google Scholar 

  27. C. Rücker, G. Rücker, Nomenclature of organic polycycles out of the computer—how to escape the jungle of the secondary bridges. Chimia 44, 116–120 (1990)

    Google Scholar 

  28. E. Kirby, Coding and enumeration of trees that can be laid upon hexagonal lattice. J. Math. Chem. 11, 187–197 (1991)

    Article  Google Scholar 

  29. M. Novič, J. Zupan, A New General and Uniform Structure Representation, in Software development in chemistry 10, GDCh, ed. by J. Gasteiger (Frankfurt an M, 1996), pp. 48–58

  30. M. Novič, M. Vračko, Comparison of spectrum-like representation of 3D chemical structure with other representations when used for modelling biological activity. Chemom. Intel. Lab. Syst. 59, 33–44 (2001)

    Article  Google Scholar 

  31. J. Zupan, M. Vračko, M. Novič, New uniform and reversible representation of 3d chemical structures. Acta Chim. Slov. 47, 19–37 (2000)

    CAS  Google Scholar 

  32. J. Zupan, M. Novič, Optimization of structure representation for QSAR studies. Anal. Chim. Acta 388, 243–250 (1999)

    Article  CAS  Google Scholar 

  33. M. Randić, M. Novič, D. Vikić-Topić, D. Plavšić, Novel mathematical code for molecular graphs. Croat. Chem. Acta (submitted)

  34. M. Randić, M. Novič, A.R. Choudhury, D. Plavšić, On graphical representation of trans-membrane proteins. SAR QSAR Environ. Res. 23, 327–343 (2012)

    Article  Google Scholar 

  35. M. Randić, Quantitative characterization of proteomics maps by matrix invariants, in Handbook of Proteomics Methods, ed. by P.M. Conn (Humana Press Inc, Totowa, NJ, 2003), pp. 429–450

    Google Scholar 

  36. M. Randić, A graph theoretical characterization of proteomics maps. Int. J. Quantum Chem. 90, 848–858 (2002)

    Article  Google Scholar 

  37. M. Randić, A graph theoretical characterization of proteomics maps. Int. J. Quantum Chem. 90, 848–858 (2002)

    Article  Google Scholar 

  38. M. Randić, M. Novič, M. Vračko, D. Plavšić, Study of proteome maps using partial ordering. J. Theor. Biol. 266, 21–28 (2010)

    Article  Google Scholar 

  39. M. Randić, M. Novič, M. Vračko, Novel characterization of proteomics maps by sequential neighbourhood of protein spots. J. Chem. Inf. Model. 45, 1205–1213 (2005)

    Article  Google Scholar 

  40. M. Randić, N. Lerš, D. Plavšić, S.C. Basak, Characterization of 2-D proteome maps based on the nearest neighborhoods of spots. Croat. Chem. Acta 77, 345–351 (2004)

    Google Scholar 

  41. E.A. Smolenskii, A method for the linear recording of graphs. Zh. Vychisl. Mat. Mat. Fiz. 2, 371–372 (1962)

    Google Scholar 

  42. E.A. Smolenskii, On coding the structural formulas of organic compounds. Dokl. Chem. 380, 237–241 (2001)

    Google Scholar 

  43. M. Randić, J. Zupan, D. Vikić-Topić, Graphical representation of proteins by star-like graphs. J. Mol. Graph. Model. 26, 290–305 (2007)

    Article  Google Scholar 

  44. B. Horvat, T. Pisanski, M. Randić, Terminal polynomials and star-like graphs. MATCH Commun. Math. Comput. Chem. 60, 493–512 (2008)

    CAS  Google Scholar 

  45. K.A. Zaretskii, Constructing a tree on the basis of a set of distances between the hanging vertices. Uspekhi Mat. Nauk 20, 90–92 (1965). (in Russian)

    Google Scholar 

  46. E.A. Smolenskii, E.V. Shuvalova, L.K. Maslova, I.V. Chuvaeva, M.S. Molchanova, Reduced matrix of topological distances with a minimum number of independent parameters: distance vectors and molecular codes. J. Math. Chem. 45, 1004–1020 (2009)

    Article  CAS  Google Scholar 

  47. R.C. Read, Survey of graph generation techniques. Lect. Notes Math. 884, 77–89 (1981)

    Article  Google Scholar 

  48. W.W. Rouse Ball, Mathematical Recreations and Essays (MacMillan and Co., Ltd., London, 1922)

    Google Scholar 

  49. W.W. Rouse Ball, H.S.M. Coxeter, Mathematical Recreations and Essays (University of Toronto Press, Toronto, 1974)

Download references

Acknowledgments

Rok Orel thanks for the financial support the European Union, European Social Fund. Milan Randić thanks the Laboratory for Chemometrics, National Institute of Chemistry, Ljubljana, Slovenia, for hospitality. This work has been supported in part by the Ministry of Science and Higher Education, of Republic of Slovenia under Research Grant P1017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Randić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Randić, M., Orel, R. Canonical labels for protein spots of proteomics maps. J Math Chem 52, 198–212 (2014). https://doi.org/10.1007/s10910-013-0255-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-013-0255-3

Keywords

Navigation