Skip to main content
Log in

Normal mode analysis of molecular motions in curvilinear coordinates on a non-Eckart body-frame: an application to protein torsion dynamics

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Normal mode analysis (NMA) was introduced in 1930s as a framework to understand the structure of the observed vibration-rotation spectrum of several small molecules. During the past three decades NMA has also become a popular alternative to figuring out the large-scale motion of proteins and other macromolecules. However, the “standard” NMA is based on approximations, which sometimes are unphysical. Especially problematic is the assumption that atoms move only “infinitesimally”, which, of course, is an oxymoron when large amplitude motions are concerned. The “infinitesimal” approximation has the further unfortunate side effect of masking the physical importance of the coupling between vibrational and rotational degrees of freedom. Here, we present a novel formulation of the NMA, which is applied for finite motions in non-Eckart body-frame. Contrary to standard normal mode theory, our approach starts by assuming a harmonic potential in generalized coordinates, and tries to avoid the linearization of the coordinates. It also takes explicitly into account the Coriolis terms, which couple vibrations and rotations, and the terms involving Christoffel symbols, which are ignored by default in the standard NMA. We also computationally explore the effect of various terms to the solutions of the NMA equation of motions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilson E.B., Decius J.C., Cross P.C.: Molecular Vibrations. (Dover, New York 1980)

    Google Scholar 

  2. G. Sørensen, A new approach to the hamiltonian of nonrigid molecules, in Large Amplitude Motion in Molecules II. Topics in Current Chemistry, vol. 82, ed. by F. L. Boschke (Springer, Berlin, 1979), pp. 97–175

  3. Cui, Q., Bahar, I. (eds.),: Normal Mode Analysis—Theory and Practice to Biological and Chemical Systems. (Chapman & Hall, CRC, London 2006)

    Google Scholar 

  4. Skjaerven L., Hollup S.M., Reuter N.: Normal mode analysis for proteins. J. Mol. Struct. THEOCHEM. 898(1–3), 42–48 (2009)

    Article  CAS  Google Scholar 

  5. Dykeman E.C., Sankey O.F.: Normal mode analysis and applications in biological physics. J. Phys. Condens. Matter. 22(42), 423202 (2010)

    Article  Google Scholar 

  6. Bahar I. et al.: Normal mode analysis of biomolecular structures: functional mechanisms of membrane proteins. Chem. Rev. 110(3), 1463–1497 (2010)

    Article  CAS  Google Scholar 

  7. Lopez-Blanco J.R., Garzon J.I., Chacon P.: iMod: multipurpose normal mode analysis in internal coordinates. Bioinformatics 27(20), 2843–2850 (2011)

    Article  CAS  Google Scholar 

  8. Kitao A., Hayward S., Go N.: Comparison of normal mode analyses on a small globular protein in dihedral angle space and cartesian coordinate space. Biophys. Chem. 52(2), 107–114 (1994)

    Article  CAS  Google Scholar 

  9. Noguti T., Go N.: Dynamics of native globular proteins in terms of dihedral angles. J. Phys. Soc. Jpn. 52, 3283–3288 (1983)

    Article  CAS  Google Scholar 

  10. Go N., Noguti T., Nishikawa T.: Dynamics of a small globular protein in terms of low-frequency vibrational modes. PNAS 80, 3696–3700 (1983)

    Article  CAS  Google Scholar 

  11. Levitt M., Sander C., Stern P.S.: Protein normal-mode dynamics: trypsin inhibitor, crambin, ribonuclease and lysozyme. J. Mol. Biol. 181, 423–447 (1985)

    Article  CAS  Google Scholar 

  12. Tirion M.: Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Phys. Rev. Lett. 77, 1905–1908 (1996)

    Article  CAS  Google Scholar 

  13. Tama F., Sanejouand Y.-H.: Conformational change of proteins arising from normal mode calculations. Protein Eng. 14(1), 1–6 (2001)

    Article  CAS  Google Scholar 

  14. Tama F., Wriggers W., Brooks C.L. III: Exploring global distortions of biological macromolecules and assemblies from low-resolution structural information and elastic network theory. J. Mol. Biol. 321, 297–305 (2002)

    Article  CAS  Google Scholar 

  15. Kovacs J.A., Chacon P., Abagyan R.: Predictions of protein flexibility: first-order measures. Proteins 56, 661–668 (2004)

    Article  CAS  Google Scholar 

  16. van Vlijmen H.W.T., Karplus M.: Normal mode calculations of icosahedral viruses with full dihedral flexibility by use of molecular symmetry. J. Mol. Biol. 350, 528–542 (2005)

    Article  Google Scholar 

  17. Rueda M., Chacon P., Orozco M.: Thorough validation of protein normal mode analysis: a comparative study with essential dynamcis. Structure 15, 565–575 (2007)

    Article  CAS  Google Scholar 

  18. Fuchigami S., Omori S., Ikeguchi M., Kidera A.: Normal mode analysis of protein dynamics in a non-eckart frame. J. Chem. Phys. 132(10), 104109 (2010)

    Article  Google Scholar 

  19. Eckart C.: Some studies concerning rotating axes and polyatomic molecules. Phys. Rev. 47, 552–558 (1935)

    Article  CAS  Google Scholar 

  20. Malhiot R.J., Ferigle S.M.: Eckart conditions in Wilson’s treatment of molecular vibrations. J. Chem. Phys. 22(4), 717–719 (1954)

    Article  CAS  Google Scholar 

  21. Louck J.D., Galbraith H.W.: Eckart vectors, Eckart frames, and polyatomic molecules. Rev. Mod. Phys. 48(1), 69 (1976)

    Article  Google Scholar 

  22. Littlejohn R.G., Reinsch M.: Gauge fields in the separation of rotations and internal motions in the n-body problem. Rev. Mod. Phys. 69(1), 213–276 (1997)

    Article  Google Scholar 

  23. Littlejohn R.G., Mitchell K.: Gauge Theory of Small Vibrations in Polyatomic Molecules. In: Newton, P, Holmes, P, Weinstein, A (eds) Geometry, mechanics, and dynamics, pp. 407–428. Springer, New York (2002)

    Chapter  Google Scholar 

  24. Meremianin A.V.: Body frames in the separation of collective angles in quantum n-body problems. J. Chem. Phys. 120(17), 7861–7876 (2004)

    Article  CAS  Google Scholar 

  25. Yanao T.M., Takatsuka K.: Kinematic effects associated with molecular frames in structural isomerization dynamics of clusters. J. Chem. Phys. 120(19), 8924–8936 (2004)

    Article  CAS  Google Scholar 

  26. Califano S.: Vibrational States. (Wiley, London 1976)

    Google Scholar 

  27. Goldstein H., Poole C., Safko J.: Classical Mechanics, 3rd edn. (Addison Wesley, San Francisco 2002)

    Google Scholar 

  28. Kay D.C.: Tensor Calculus (Schaum’s outline series). (McGraw-Hill, New York 1988)

    Google Scholar 

  29. Noguti T., Go N.: A method of rapid calculation of a second derivative matrix of conformational energy for large molecules. J. Phys. Soc. Jpn. 52(10), 3685–3690 (1983)

    Article  CAS  Google Scholar 

  30. Braun W., Yoshioki S., Go N.: Formulation of static and dynamic conformational energy analysis of biopolymer systems consisting of two or more molecules. J. Phys. Soc. Jpn. 53(9), 3269 (1984)

    Article  CAS  Google Scholar 

  31. Hestenes D.: New Foundations for Classical Mechanics, 2nd edn. (Kluwer Academic Publishers, Dordrecht 1999)

    Google Scholar 

  32. Wei H.: Eckart frames for planar molecules. J. Chem. Phys. 118, 7202 (2003)

    Article  CAS  Google Scholar 

  33. Kudin K.N., Dymarsky A.Y.: Eckart axis conditions and the minimization of the root-mean-square deviation: Two closely related problems. J. Chem. Phys. 122, 224105 (2005)

    Article  Google Scholar 

  34. Pesonen J., Henriksson K.O.E.: Polymer conformations in internal (polyspherical) coordinates. J. Comput. Chem. 31(9), 1873–1881 (2010)

    CAS  Google Scholar 

  35. Henriksson K.O.E., Pesonen J.: Polymer dynamics in torsion space. J. Comput. Chem. 31(9), 1882–1888 (2010)

    CAS  Google Scholar 

  36. Pesonen J.: Kinetic energy operators in linearized internal coordinates. J. Chem. Phys. 128(4), 044319 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janne Pesonen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pesonen, J., Henriksson, K.O.E., López-Blanco, J.R. et al. Normal mode analysis of molecular motions in curvilinear coordinates on a non-Eckart body-frame: an application to protein torsion dynamics. J Math Chem 50, 1521–1549 (2012). https://doi.org/10.1007/s10910-012-9987-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-012-9987-8

Keywords

Navigation