Skip to main content
Log in

Diamond hydrocarbons revisited: partitioned formula tables of diamondoids

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Isomeric diamondoids with the same number \(n\) of adamantane units (or cells), which share the same molecular formula \(\text{ C}_\mathrm{Q}(\text{ CH})_\mathrm{T}(\text{ CH}_{2})_\mathrm{S}\), can be divided into valence isomers by partitioning the number \(C \) of their carbon atoms according to whether they are Quaternary, Tertiary, or Secondary: \(C =Q +T +S\). Each [\(n\)]diamondoid has a dualist (or inner dual) with \(n\) vertices (situated at centers of adamantane units), and edges connecting vertices of adjacent adamantane units sharing a chair-shaped hexagon of carbon atoms. Such a dualist is characterized by a quadruplet of indices (denoted as p, s, t, q for primary, secondary, tertiary, or quaternary) specifying again the connectivity of each vertex by assimilating it with a virtual carbon atom. The diamond lattice is self-dual. Dualists help in classifying diamondoids as catamantanes with acyclic dualists, perimantanes with dualists having chair-shaped six-membered rings, or coronamantanes with dualists having only higher-membered rings. In turn, catamantanes can be either regular when they have formulas \(\text{ C}_{4n+6}\text{ H}_{4n+12}\), or irregular when the numbers of carbon and hydrogen atoms are lower than the above values for the given numbers \(n\) of adamantane units. Regular catamantanes can have branched or non-branched dualists and they are isomeric when having the same \(n\). Partitioned formulas reflect the branching patterns, encoded in their dualists. Partition formulas and codes are presented for all possible diamondoids with up to 7 adamantane units. A remarkable symmetry is observed for the table of partition periodic table of regular catamantanes with up to 7 adamantane units. Isomeric irregular catamantanes with six or more adamantane units may be valence-isomeric (or homomeric, sharing both the molecular and the partitioned formulas), or heteromeric when they have different partitioned formulas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Todeschini, V. Consonni, Molecular Descriptors for Chemoinformatics, 2nd edn (Wiley-VCH, Weinheim, 2009)

    Book  Google Scholar 

  2. A.T. Balaban, M. Banciu, V. Ciorba, Annulenes, Benzo-, Hetero-, Homo-Derivatives and Their Valence Isomers (CRC Press, Boca Raton, 1986)

    Google Scholar 

  3. A.T. Balaban, F. Harary, Chemical graphs. V. Enumeration and proposed nomenclature of benzenoid cata-condensed polycyclic aromatic hydrocarbons. Tetrahedron 24, 2505–2516 (1968)

    Article  CAS  Google Scholar 

  4. A.T. Balaban, Chemical graphs. VII. Proposed nomenclature of branched cata-condensed benzenoid polycyclic hydrocarbons. Tetrahedron 25, 2949–2956 (1969)

    Article  CAS  Google Scholar 

  5. A.T. Balaban, M. Pompe, QSPR for physical properties of cata-condensed benzenoids using two simple dualist-based descriptors. J. Phys. Chem. A 111, 2448–2454 (2007)

    Article  CAS  Google Scholar 

  6. A.T. Balaban, S. Aziz, A.D. Manikpuri, P.V. Khadikar, Simple correlations of the \(\pi \)-electron energy and other properties of cata-condensed benzenoids. J. Indian Chem. Soc. 88, 87–97 (2011)

    CAS  Google Scholar 

  7. A.T. Balaban, D. Biermann, W. Schmidt, Chemical graphs. 41. Dualist graph approach for correlating Diels-Alder reactivites of polycyclic aromatic hydrocarbons. Nouv. J. Chim. 9, 443–449 (1985)

    CAS  Google Scholar 

  8. D.J. Klein, Rigorous results for branched polymer models with excluded volume. J. Chem. Phys. 75, 5186–5189 (1981)

    Article  CAS  Google Scholar 

  9. L. Bytautas, D.J. Klein, Formula periodic table for acyclic hydrocarbon isomer classes: combinatorially averaged graph invariants. Phys. Chem. Chem. Phys. 1, 5565–5572 (1999)

    Article  CAS  Google Scholar 

  10. L. Bytautas, D.J. Klein, T.G. Schmalz, All acyclic hydrocarbons: formula periodic table and average properties via chemical combinatorics. New J. Chem. 24, 329–336 (2000)

    Article  CAS  Google Scholar 

  11. A.T. Balaban, Chemical graphs. XXVII. Enumeration and codification of staggered conformations of alkanes. Rev. Roum. Chim. 21, 1049–1071 (1976)

    CAS  Google Scholar 

  12. A.T. Balaban, Enumeration of catafusenes, diamondoid hydrocarbons and staggered alkane C-rotamers. MATCH Commun. Math. Comput. Chem. 2, 51–61 (1976)

    Google Scholar 

  13. A.T. Balaban, V. Baciu, Chemical graphs. XXXV. Application of Polya’s theorem to catamantanes. MATCH Commun. Math. Comput. Chem. 4, 131–159 (1978)

    Google Scholar 

  14. A.T. Balaban, P. von R. Schleyer, Systematic classification and nomenclature of diamond hydrocarbons. I. Graph-theoretical enumeration of polymantanes. Tetrahedron 34, 3599–3609 (1978)

  15. A.T. Balaban, Partitioned-formula tables for diamond hydrocarbons (diamondoids). J. Chem. Inf. Model. 52, 2856–2869 (2012)

    Google Scholar 

  16. J.E.P. Dahl, J.M. Moldowan, Z. Wei, P.A. Lipton, P. Denisevich, R. Gat, S. Liu, P.R. Schreiner, R.M.K. Carlson, Synthesis of higher diamondoids and implication for their formation in petroleum. Angew. Chem. Int. Ed. 49, 9881–9885 (2010)

    Article  CAS  Google Scholar 

  17. S. Landa, V. Mahacek, Sur l’adamantane, nouvel hydrocarbure extrait du naphte. Coll. Czech. Chem. Commun. 5, 1–5 (1933)

    CAS  Google Scholar 

  18. V. Prelog, B. Seiwerth, Über die synthese des adamantans. Ber. Dtsch. Chem. Ges. 74, 1644–1648 (1941)

    Article  Google Scholar 

  19. V. Prelog, B. Seiwerth, Über eine neue, ergiebigere darstellung des adamantans. Ber. Dtsch. Chem. Ges. 74, 1679–1772 (1941)

    Google Scholar 

  20. P. von R. Schleyer, A simple preparation of adamantane. J. Am. Chem. Soc. 79, 3292 (1957)

  21. C.A. Cupas, P. von R. Schleyer, D.J. Trecker, Congressane. J. Am. Chem. Soc. 87, 917–918 (1965)

  22. V.Z. Williams Jr, P. von R. Schleyer, G.J. Gleicher, L.B. Rodewald, Triamantane. J. Am. Chem. Soc. 88, 3862–3863 (1966)

  23. H.W. Whitlock Jr, M.W. Siefken, Tricyclo [4.4.0.0\(^{3,8}\)] decane to adamantane rearrangement. J. Am. Chem. Soc. 90, 4929–4939 (1968)

    Article  CAS  Google Scholar 

  24. E.M. Engler, M. Farcasiu, A. Sevin, J.M. Cense, P. von R. Schleyer, On the mechanism of adamantane rearrangements. J. Am. Chem. Soc. 95, 5769–5771 (1973)

  25. M.A. McKervey, Adamantane rearrangements. Chem. Soc. Rev. 3, 479–512 (1974)

    Article  CAS  Google Scholar 

  26. P. von R. Schleyer, My thirty years in hydrocarbon cages: from adamantane to dodecahedrane, in Cage Hydrocarbons, ed. by G.A. Olah (Wiley-Interscience, New York, 1990), pp. 1–38

  27. R.C. Fort Jr, P. von R. Schleyer, Adamantane. Consequences of the diamondoid structure. Chem. Rev. 64, 277–300 (1964)

  28. T.M. Gund, P. von R. Schleyer, P.H. Gund, W.T. Wipke, Computer assisted graph-theoretical analysis of complex mechanistic problems in polycyclic hydrocarbons. The mechanism of diamantane formation from various pentacyclodecanes. J. Am. Chem. Soc. 97, 751 (1975)

  29. M.A. McKervey, Synthetic approaches to large diamondoid hydrocarbons. Tetrahedron 36, 971–992 (1980)

    Article  CAS  Google Scholar 

  30. M.A. McKervey, J.J. Rooney, Catalytic routes to adamantane and its homologues, in Cage Hydrocarbons, ed. by G.A. Olah (Wiley-Interscience, New York, 1990), pp. 39–64

    Google Scholar 

  31. W. Burns, T.R.B. Mitchell, M.A. McKervey, J.J. Rooney, G. Ferguson, P. Roberts, Gas-phase reactions on platinum. Synthesis and crystal structure of anti-tetramantane, a large diamondoid fragment. Chem. Commun. 893–895 (1976)

  32. R.C. Fort Jr, Adamantane. The Chemistry of Diamond Molecules (Marcel Dekker, New York, 1976)

    Google Scholar 

  33. P.L.B. Araujo, E.S. Araujo, G.A. Mansoori, Diamondoids: occurrence in fossil fuels, applications in petroleum exploration and fouling in petroleum production. A reveiew paper. Int. J. Oil Gas Coal Technol. 5, 316–367 (2012)

    Article  Google Scholar 

  34. A.T. Balaban, Diamond hydrocarbons and related structures, in Diamond and Related Nanostructures, ed. by M.V. Diudea, C.L. Nagy (Springer, Berlin, 2013)

    Google Scholar 

  35. G.A. Mansoori, P.L.B. de Araujo, E.S. de Araujo, Diamondoid Molecules with Applications in Biomedicine, Materials Science Nanotechnology and Petroleum Science (Wiley, New York, 2012)

    Book  Google Scholar 

  36. J.E. Dahl, J.M. Moldowan, K.E. Peters, G.E. Claypool, M.A. Rooney, G.E. Michael, M.R. Mello, M.L. Kohnen, Diamondoid hydrocarbons as indicators of natural oil cracking. Nature 399, 54–47 (1999)

    Article  CAS  Google Scholar 

  37. J.E. Dahl, S.G. Liu, R.M.K. Carlson, Isolation and structure of higher diamondoids, nanometer-sized diamond molecules. Science 299, 96–99 (2003)

    Article  CAS  Google Scholar 

  38. J.W. Dahl, J.M. Moldowan, T.M. Peakman, J.C. Clardy, E. Lobkowski, M.M. Olmstead, P.W. My, T.J. Davis, J.W. Steeds, K.E. Peters, A. Pepper, A. Ekuan, R.M.K. Carlson, Isolation and structural proof of the large diamond molecule, cyclohexamantane \((\text{ C}_{26}\text{ H}_{30})\). Angew. Chem. Int. Ed. 42, 2040–2044 (2003)

    Article  CAS  Google Scholar 

  39. A.T. Balaban, D.J. Klein, J.E. Dahl, R.M.K. Carlson, Molecular descriptors for natural diamondoid hydrocarbons and quantitative structure-property relationships for their chromatographic data. Open Org. Chem. J. 1, 13–31 (2007)

    CAS  Google Scholar 

  40. P.R. Schreiner, A.A. Fokin, H.P. Reisenauer, B.A. Tkachenko, E. Vass, M.M. Olmstead, D. Bläser, R. Boese, J.E.P. Dahl, R.M.K. Carlson, [123]Tetramantane: parent of a new family of \(\sigma \)-helicenes. J. Am. Chem. Soc. 131, 11292–11293 (2009)

  41. H. Schwertfeger, C. Würtele, H. Hausmann, J.E.P. Dahl, R.M.K. Carlson, A.A. Fokin, P.R. Schreiner, Selective preparation of diamondoid fluorides. Adv. Synth. Catal. 451, 1041–1054 (2009)

    Google Scholar 

  42. A.A. Fokin, P.A. Gunchenko, A.A. Novikovsky, T.E. Shubina, B.V. Chernyaev J.E.P. Dahl, R.M.K. Carlson, A.G. Yurchenko, P.R. Schreiner, Photoacetylation of diamondoids: selectivities and mechanism. Eur. J. Org. Chem. 5153–5161 (2009)

  43. A.A. Fokin, B.A. Tkachenko, N.A. Fokina, H. Hausmann, M. Serafin, J.E.P. Dahl, R.M.K. Carlson, P.R. Schreiner, Reactivities of the prism-shaped diamondoids [1(2)3]tetramantane and [12312]hexamantane (cyclohexamantane). Chem. Eur. J. 15, 3851–3862 (2009)

    Article  CAS  Google Scholar 

  44. A.A. Fokin, A. Merz, N.A. Fokina, H. Schwertfeger, S.L. Liu, J.E.P. Dahl, R.M.K. Carlson, P.R. Schreiner, Synthetic routes to aminotriamantanes, topological analogues of the neuroprotector memantine. Synthesis, 909–912 (2009)

  45. A.A. Fokin, T.S. Zhuk, A.E. Pashenko, P.O. Dral, P.A. Gunchenko, J.E.P. Dahl, R.M.K. Carlson, T.V. Koso, M. Serafin, P.R. Schreiner, Oxygen-doped nanodiamonds: synthesis and functionalizations. Org. Lett. 11, 3068–3071 (2009)

    Article  CAS  Google Scholar 

  46. A.A. Fokin, P.R. Schreiner, Band gap tuning in nanodiamonds: first principle computational studies. Mol. Phys. 107, 823–830 (2009)

    Article  CAS  Google Scholar 

  47. A.A. Fokin, B.A. Tkachenko, P.A. Gunchenko, D.V. Gusev, P.R. Schreiner, Functionalized nanodiamonds. Part I. An experimental assessment of diamantane and computational predictions for higher diamondoids. Chem. Eur. J. 11, 7091–7101 (2005)

    Article  CAS  Google Scholar 

  48. A.T. Balaban, J. Brunvoll, J. Cioslowski, B.N. Cyvin, S.J. Cyvin, I. Gutman, H. Wenchen, H. Wenjie, J.V. Knop, M. Kovacević, W.R. Müller, W.R. Szymanski, R. Tosić, N. Trinajstić, Enumeration of benzenoid and coronoid hydrocarbons. Z. Naturforsch. 42c, 863–870 (1987)

    Google Scholar 

  49. G. Caporossi, P. Hansen, Enumeration of polyhex hydrocarbons to h = 21. J. Chem. Inf. Model. 38, 610–619 (1998)

    Article  CAS  Google Scholar 

  50. I. Gutman, How many benzenoid hydrocarbons? Bull. Chem. Technol. Maced. 21, 53–56 (2002)

    CAS  Google Scholar 

  51. G. Brinkmann, G. Caporossi, P. Hansen, A survey and new results on computer enumeration of polyhex and fusene hydrocarbons. J. Chem. Inf. Comput. Sci. 43, 842–851 (2003)

    Article  CAS  Google Scholar 

  52. G. Brinkmann, C. Grothaus, I. Gutman, Fusenes and benzenoids with perfect matchings. J. Math. Chem. 42, 909–924 (2007)

    Article  CAS  Google Scholar 

  53. M. Vöge, A.J. Gutmann, I. Jensen, On the number of benzenoid hydrocarbons. J. Chem. Inf. Comput. Sci. 42, 456–466 (2002)

    Article  Google Scholar 

  54. I. Jensen, A parallel algorithm for the enumeration of benzenoid hydrocarbons. J. Stat. Mech. P02065 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandru T. Balaban.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balaban, A.T. Diamond hydrocarbons revisited: partitioned formula tables of diamondoids. J Math Chem 51, 1043–1055 (2013). https://doi.org/10.1007/s10910-012-0130-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-012-0130-7

Keywords

Navigation