We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Information-theoretic properties of the half-line Coulomb potential

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The half-line one-dimensional Coulomb potential is possibly the simplest D-dimensional model with physical solutions which has been proved to be successful to describe the behaviour of Rydberg atoms in external fields and the dynamics of surface-state electrons in liquid helium, with potential applications in constructing analog quantum computers and other fields. Here, we investigate the spreading and uncertaintylike properties for the ground and excited states of this system by means of the logarithmic measure and the information-theoretic lengths of Renyi, Shannon and Fisher types; so, far beyond the Heisenberg measure. In particular, the Fisher length (which is a local quantity of internal disorder) is shown to be the proper measure of uncertainty for our system in both position and momentum spaces. Moreover the position Fisher length of a given physical state turns out to be not only directly proportional to the number of nodes of its associated wavefunction, but also it follows a square-root energy law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Casati G., Chirikov B.V., Shepelyansky D.L., Guarneri I.: Relevance of classical chaos in quantum mechanics: the hydrogen atom in a monochromatic field. Phys. Rep. 154, 77–123 (1987)

    Article  CAS  Google Scholar 

  2. Casati G., Chirikov B.V., Shepelyansky D.L., Guarneri I.: Relevance of classical chaos in quantum mechanics: the hydrogen atom in a monochromatic field. IEEE J. Quantum Electron QE-24, 1420–1444 (1988)

    Article  Google Scholar 

  3. Mayle M. et al.: One-dimensional Rydberg gas. Phys. Rev. Lett. 99, 113004 (2007)

    Article  Google Scholar 

  4. Leopold J.G., Percival I.C.: Microwave ionization and excitation of Rydberg atoms. Phys. Rev. Lett. 41, 944 (1978)

    Article  CAS  Google Scholar 

  5. Richards D.: Ionisation of excited one-dimensional hydrogen atoms by low-frequency fields. J. Phys. B 20, 2171 (1987)

    Article  CAS  Google Scholar 

  6. Leopold J.G., Richards D.: A study of quantum dynamics in the classically chaotic regime. ibid 21, 2179 (1988)

    Google Scholar 

  7. Stokey C.L. et al.: Production of quasi-one-dimensional very-high-n Rydberg atoms. Phys. Rev. A 67, 013403 (2003)

    Article  Google Scholar 

  8. Pen V.L., Jiang T.F.: Strong-field effects of the one-dimensional hydrogen atom in momentum space. Phys. Rev. A 46, 4297–4305 (1992)

    Article  CAS  Google Scholar 

  9. Nieto M.M.: Electrons above a helium surface and the one-dimensional Rydberg atom. Phys. Rev. A 61, 034901 (2000)

    Article  Google Scholar 

  10. Jensen R.V.: Stochastic ionization of surface-state electrons. Phys. Rev. Lett. 49, 1365 (1982)

    Article  CAS  Google Scholar 

  11. Jensen R.V.: Stochastic ionization of surface-state electrons: classical theory. Phys. Rev. A 30, 386–397 (1984)

    Article  CAS  Google Scholar 

  12. Dykman M.I., Playzman P.M., Seddigrad P.: Qubits with electrons on liquid helium. Phys. Rev. B 67, 155402 (2003)

    Article  Google Scholar 

  13. Platzman P.M., Dykman M.I.: Quantum computing with electrons on liquid helium. Science 284, 1967 (1999)

    Article  CAS  Google Scholar 

  14. Jaksch D. et al.: Fast quantum gates for neutral atoms. Phys. Rev. Lett. 85, 2208 (2000)

    Article  CAS  Google Scholar 

  15. Veilande R., Bersons I.: Wave packet fractional revivals in a one-dimensional Rydberg atom. J. Phys. B 40, 2111–2119 (2007)

    Article  CAS  Google Scholar 

  16. Fischer W., Leschke H., Müller P.: The functional-analytic versus the functional-integral approach to quantum Hamiltonians: The one-dimensional hydrogen atom. J. Math. Phys. 36, 2313 (1995)

    Article  Google Scholar 

  17. Guillot T.: A comparison of the interior of Jupiter and Saturn. Planet. Space Sci. 47, 1183 (1999)

    Article  CAS  Google Scholar 

  18. Avery J.: Hyperspherical Harmonics: Applications in Quantum Theory. Kluwer Academic, Dodrecht (1988)

    Google Scholar 

  19. Sichel H.S.: Fitting growth and frequency curves by the method of frequency moments. J. Roy. Statist. Soc. 110, 337–347 (1947)

    Article  Google Scholar 

  20. Yule G.U.: On some properties of normal distributions, univariate and bivariate, based on sums of squares of frequencies. Biometrika 30, 1–10 (1938)

    Google Scholar 

  21. Kendall M.G., Stuart A.: The Advanced Theory of Statistics vol.1. Charles Griffin Co, London (1969)

    Google Scholar 

  22. Sichel H.S.: The method of frequency-moments and its applications to type VII Populations. Biometrika 36, 404 (1949)

    CAS  Google Scholar 

  23. Shenton L.R.: Efficiency of the method of moments and the Gram-Charlier type A distribution. Biometrika 38, 58–73 (1951)

    CAS  Google Scholar 

  24. E. Romera, J.C. Angulo, J.S. Dehesa, Reconstruction of a density from its entropic moments, in The 21st. International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, A. I. P., New York, 2002, ed. by R. L. Fry, pp. 449–457

  25. J.B.M. Uffink, Measures of uncertainty and the uncertainty principle, Ph. D. Thesis, University of Utrech, 1990

  26. Hall M.J.W.: Universal geometric approach to uncertainty entropy and information. Phys. Rev. A 59, 2602–2615 (1999)

    Article  CAS  Google Scholar 

  27. Hall M.J.W.: Exact uncertainty measures. Phys. Rev. A 64, 052103 (2001)

    Article  Google Scholar 

  28. Onicescu O.: Energie informationalle. C.R. Acad. Sci. Paris. A 263, 841 (1966)

    Google Scholar 

  29. Heller E.: Quantum localization and the rate of exploration of phase space. Phys. Rev. A 35, 1360 (1987)

    Article  Google Scholar 

  30. Sánchez-Moreno P., González-Férez R., Dehesa J.S.: Improvement of the Heisenberg and Fisher-information-based uncertainty relations for D-dimensional central potentials. New J. Phys. 8, 330 (2006)

    Article  Google Scholar 

  31. Dehesa J.S., González-Férez R., Sánchez-Moreno P.: The Fisher-information based uncertainty relation, Cramer-Rao inequality and kinetic energy for the D-dimensional central problem. J. Phys. A 40, 1845–1856 (2007)

    Article  Google Scholar 

  32. Patil S.H., Sen K.D., Watson N.A., Montogomery H.E. Jr.: Characteristic measures of net information measures for constrained Coulomb potentials. J. Phys. B 40, 2147–2162 (2007)

    Article  CAS  Google Scholar 

  33. Sánchez-Ruiz J., Dehesa J.S.: Entropic integrals of orthogonal hypergeometric polynomials with general supports. J. Comp. Appl. Math. 118, 311–322 (2000)

    Article  Google Scholar 

  34. Dehesa J.S., Yáñez R.J., Aptekarev A.I., Buyarov V.: Strong asymptotics of Laguerre polynomials and information entropies of two-dimensional harmonic oscillator and one-dimensional Coulomb potentials. J. Math. Phys. 39, 3050 (1998)

    Article  Google Scholar 

  35. Bialynicki-Birula I., Mycielski J.: Uncertainty relations for information entropy. Commun. Math. Phys. 44, 129 (1975)

    Article  Google Scholar 

  36. Beckner W.: Pitt’s inequality and the uncertainty principle. Proc. Am. Math. Soc. 123, 1897 (1995)

    Article  Google Scholar 

  37. Patil S.H., Sen K.D.: Scaling properties of net information measures for superpositions of power potentials: free and spherically confined cases. Phys. Lett. A 370, 354 (2007)

    Article  CAS  Google Scholar 

  38. Sen K.D., Katriel J.: Information entropies for eigendensities of homogeneous potentials. J. Chem. Phys. 125, 074117 (2006)

    Article  CAS  Google Scholar 

  39. Catalán R.G., Garay J., López-Ruiz R.: Features of the extension of a statistical measure of complexity to continuous systems. Phys. Rev. E 66, 011102 (2002)

    Article  Google Scholar 

  40. Angulo J.C., Antolín J.: Atomic complexity measures in position and momentum spaces. J. Chem. Phys. 128, 164109 (2008)

    Article  CAS  Google Scholar 

  41. Sen K.D., Antolín J., Angulo J.C.: Fisher-Shannon analysis of ionizaton processes and isoelectronic series. Phys. Rev A 76, 032502 (2007)

    Article  Google Scholar 

  42. P. Sánchez-Moreno, J.J. Omiste, J.S. Dehesa, Entropic functionals of Laguerre polynomials and complexity properties of the half-line Coulomb potential, Preprint (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Dehesa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omiste, J.J., Yáñez, R.J. & Dehesa, J.S. Information-theoretic properties of the half-line Coulomb potential. J Math Chem 47, 911–928 (2010). https://doi.org/10.1007/s10910-009-9611-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-009-9611-8

Keywords

Navigation