Skip to main content
Log in

Statistical–mechanical models with separable many-body interactions: especially partition functions and thermodynamic consequences

  • REVIEW
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

We start from a classical statistical–mechanical theory for the internal energy in terms of three- and four-body correlation functions g 3 and g 4 for homogeneous atomic liquids like argon, with assumed central pair interactions \({\phi(r_{ij})}\) . The importance of constructing the partition function (pf) as spatial integrals over g 3, g 4 and \({\phi}\) is stressed, together with some basic thermodynamic consequences of such a pf. A second classical example taken for two-body interactions is the so-called one-component plasma in two dimensions, for a particular coupling strength treated by Alastuey and Jancovici (J Phys (France) 42:1, 1981) and by Fantoni and Tellez (J Stat Phys 133:449, 2008). Again thermodynamic consequences provide a particular focus. Then quantum–mechanical assemblies are treated, again with separable many-body interactions. The example chosen is that of an N-body inhomogeneous extended system generated by a one-body potential energy V(r). The focus here is on the diagonal element of the canonical density matrix: the so-called Slater sum S(r, β), related to the pf by \({{\rm pf}(\beta) = \int {S({\bf r}, \beta)}d\vec {r}}\), β = (k B T)−1. The Slater sum S(r, β) can be related exactly, via a partial differential equation, to the one-body potential V(r), for specific choices of V which are cited. The work of Green (J Chem Phys 18:1123, 1950), is referred to for a generalization, but now perturbative, to two-body forces. Finally, to avoid perturbation series, the work concludes with some proposals to allow the treatment of extended assemblies in which regions of long-range ordered magnetism exist in the phase diagram. One of us (Z.D.Z.) has recently proposed a putative pf for a three-dimensional (3D) Ising model, based on two, as yet unproved, conjectures and has pointed out some important thermodynamic consequences of this pf. It would obviously be of considerable interest if such a pf, together with conjectures, could be rigorously proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hill T.L.: Statistical Mechanics. McGraw-Hill, New York (1956)

    Google Scholar 

  2. N.H. March, W.H. Young, S. Sampanthar, The Many-Body Problem in Quantum Mechanics (Dover, New York, 1995)

    Google Scholar 

  3. Howard I.A., March N.H.: Phys. Stat. Solidi (b) 237, 265 (2003)

    Article  Google Scholar 

  4. Zhang Z.D.: Phil. Mag. 87, 5309 (2007)

    Article  CAS  Google Scholar 

  5. March N.H., Tosi M.P.: Atomic Dynamics in Liquids. Dover, New York (1991)

    Google Scholar 

  6. Johnson M.D., March N.H.: Phys. Lett. 3, 313 (1963)

    Article  CAS  Google Scholar 

  7. L. Reatto, Phil. Mag. A 58, 37 (1988)

    Article  CAS  Google Scholar 

  8. Egelstaff P.A.: An Introduction to the Liquid State. Clarendon Press, Oxford (1992)

    Google Scholar 

  9. Schofield P.: Proc. Phys. Soc.(London) 88, 149 (1966)

    Article  CAS  Google Scholar 

  10. Bratby P., Gaskell T., March N.H.: Phys. Chem. Liquids 2, 53 (1970)

    Article  CAS  Google Scholar 

  11. Zemansky M.W.: Heat and Thermodynamics. McGraw-Hill, New York (1951)

    Google Scholar 

  12. Perrot F., March N.H.: Phys. Rev. A 41, 4521 (1990)

    Article  CAS  Google Scholar 

  13. Perrot F., March N.H.: Phys. Rev. A 42, 4884 (1990)

    Article  CAS  Google Scholar 

  14. Worster J., March N.H.: Solid State Commun. 2, 245 (1964)

    Article  CAS  Google Scholar 

  15. Fortov V.E., Petrov O.F., Vaulina O.S.: Phys. Rev. Lett. 101, 195003 (2008)

    Article  CAS  Google Scholar 

  16. March N.H., Tosi M.P.: Coulomb Liquids. Academic, London (1984)

    Google Scholar 

  17. Jancovici B.: Phys. Rev. Lett. 46, 386 (1981)

    Article  Google Scholar 

  18. Alastuey A., Jancovici B.: J. Phys. (France) 42, 1 (1981)

    Google Scholar 

  19. Fantoni R., Téllez G.: J. Stat. Phys. 133, 449 (2008)

    Article  Google Scholar 

  20. Rashid R.I.M.A., Senatore G., March N.H.: Phys. Chem. Liquids 16, 1 (1986)

    Article  CAS  Google Scholar 

  21. Edwards S.F., Lenard A.: J. Math. Phys. 3, 778 (1962)

    Article  Google Scholar 

  22. Hernando J.A.: J. Chem. Phys. 84, 2853 (1986)

    Article  Google Scholar 

  23. Hernando J.A.: Phys. Rev. A 33, 1338 (1986)

    Article  Google Scholar 

  24. Kumar N., March N.H., Wasserman A.: Phys. Chem. Liquids 11, 271 (1982)

    Article  CAS  Google Scholar 

  25. Golden K.I., March N.H., Ray A.K.: Mol. Phys. 80, 915 (1993)

    Article  CAS  Google Scholar 

  26. Greenfield A.J., Wellendorf J., Wiser N.: Phys. Rev. A 4, 1607 (1971)

    Article  Google Scholar 

  27. March N.H., Murray A.M.: Proc. Roy. Soc. A 261, 119 (1961)

    Article  Google Scholar 

  28. March N.H., Murray A.M.: Phys. Rev. 120, 830 (1960)

    Article  Google Scholar 

  29. N.H. March, W.H. Young, S. Sampanthar (Cambridge University Press, Dover, New York, 1995)

  30. DeMarco B., Jin D.S.: Science 285, 1703 (1999)

    Article  CAS  Google Scholar 

  31. March N.H.: J. Math. Phys. 28, 2973 (1987)

    Article  Google Scholar 

  32. Cooper I.L.: Phys. Rev. A 50, 1040 (1994)

    Article  CAS  Google Scholar 

  33. Pfalzner S., Lehmann H., March N.H.: J. Math. Chem. 16, 9 (1994)

    Article  CAS  Google Scholar 

  34. Blinder S.M.: Phys. Rev. A 43, 13 (1991)

    Article  CAS  Google Scholar 

  35. March N.H.: Electron Density Theory of Atoms and Molecules. Academic, New York (1992)

    Google Scholar 

  36. Lehmann H., March N.H.: Phys. Chem. Liquids 27, 65 (1994)

    Article  CAS  Google Scholar 

  37. Sondheimer E.H., Wilson A.H.: Proc. Roy. Soc. (London) A 210, 173 (1951)

    Article  CAS  Google Scholar 

  38. Howard I.A., March N.H., Nieto L.M.: Phys. Rev. A 66, 054501 (2002)

    Article  Google Scholar 

  39. A.F. Hebard, M. J. Rosseinsky, R. C. Haddon, D. W. Murphy, S. H. Glarum, T. T. M. Palstra, A. P. Ramirez, A. R. Kortan, Nature (London) 350, 600 (1991)

  40. Holas A., March N.H.: Phys. Rev. A 49, 3432 (1994)

    Article  CAS  Google Scholar 

  41. Amovilli C., March N.H.: Int. J. Quantum Chem. 106, 533 (2006)

    Article  CAS  Google Scholar 

  42. Benguria R.D., Brummelhuis R., Duclos P., Peréz-Oyarzun S.J.: J. Phys. B 37, 2311 (2004)

    Article  CAS  Google Scholar 

  43. Wu F.Y., McCoy B.M., Fisher M.E., Chayes L.: Phil. Mag. 88, 3093 (2008)

    Article  CAS  Google Scholar 

  44. Zhang Z.D.: Phil. Mag. 88, 3097 (2008)

    Article  CAS  Google Scholar 

  45. Wu F.Y., McCoy B.M., Fisher M.E., Chayes L.: Phil. Mag. 88, 3103 (2008)

    Article  CAS  Google Scholar 

  46. Perk J.H.H.: Phil. Mag. 89, 761 (2009)

    Article  CAS  Google Scholar 

  47. Zhang Z.D.: Phil. Mag. 89, 765 (2009)

    Article  CAS  Google Scholar 

  48. Perk J.H.H.: Phil. Mag. 89, 769 (2009)

    Article  CAS  Google Scholar 

  49. Z.D. Zhang, Solid State Commun. (2009) submitted

  50. Gallavotti G., Miracle-Solé S.: Commun. Math. Phys. 7, 274 (1968)

    Article  Google Scholar 

  51. Lebowitz J.L., Penrose O.: Commun. Math. Phys. 11, 99 (1968)

    Article  Google Scholar 

  52. Ruelle D.: Statistical Mechanics, Rigorous Results. Benjamin, NY (1969)

    Google Scholar 

  53. R.B. Griffiths, Phase Transitions and Critical Phenomena, chapter 2, sections III and IV D, vol. 1, ed. by C. Domb, M.S. Green (Academic Press, London, 1972)

  54. S. Miracle-Solé, Theorems on phase transitions with a treatment for the Ising model, in Lecture Notes in Physics, vol. 54 (Springer, 1976), pp. 189–214.

  55. Ya.G. Sinai, Theory of Phase Transitions: Rigorous Results (Pergamon Press, Oxford, 1982) Chapter II.

  56. J. Glimm, A. Jaffe, Quantum Physics, Chapters. 18, 20, 2nd edn. (Springer, New York, 1987)

  57. Israel R.B.: Commun. Math. Phys. 50, 245 (1976)

    Article  Google Scholar 

  58. Zahradnik M.: J. Stat. Phys. 47, 725 (1987)

    Article  Google Scholar 

  59. Yang C.N., Lee T.D.: Phys. Rev. 87, 404 (1952)

    Article  CAS  Google Scholar 

  60. Lee T.D., Yang C.N.: Phys. Rev. 87, 410 (1952)

    Article  CAS  Google Scholar 

  61. Klein D.J., March N.H.: Phys. Lett. A 372, 5052 (2008)

    Article  CAS  Google Scholar 

  62. Strečka J., Čanová L., Dely J.: Physica A 388, 2394 (2009)

    Article  Google Scholar 

  63. Kauffman L.H.: Knots and Physics, 3rd ed. World Scientific Publishing Co. Pte. Ltd, Singapore (2001)

    Google Scholar 

  64. Green H.S.: J.Chem. Phys. 19, 955 (1951)

    Article  CAS  Google Scholar 

  65. Onsager L.: Phys. Rev. 65, 117 (1944)

    Article  CAS  Google Scholar 

  66. Johnson M.W., March N.H., Perrot F., Ray A.K.: Phil. Mag. B 69, 965 (1994)

    Article  CAS  Google Scholar 

  67. Bruce A.D.: J. Phys. C: Solid State Phys. 14, 3667 (1981)

    Article  CAS  Google Scholar 

  68. L.P. Kadanoff, Critical phenomena, Proc. Int. School of Physics ‘Enrico Fermi’: ed. M.S. Green (Academic Press, New York, 1971) p.100

  69. Kadanoff L.P.: Physics 2, 263 (1966)

    Google Scholar 

  70. Patashinskii A.Z.: Sov. Phys. – JETP 26, 1126 (1968)

    Google Scholar 

  71. Jona-Lasinio G.: Nuovo. Cim. 26, 99 (1975)

    Article  Google Scholar 

  72. Wilson K.G.: Phys. Rev. B 4, 3184 (1971)

    Article  Google Scholar 

  73. March N.H., Zhang Z.D.: Phys. Lett. A 373, 2075 (2009)

    Article  CAS  Google Scholar 

  74. N.H. March, Z.D. Zhang, Phys. Chem. Liquids 47 (2009) in press

  75. Ho J.T., Litster J.D.: Phys. Rev. Lett. 22, 603 (1969)

    Article  CAS  Google Scholar 

  76. Schofield P., Litster J.D., Ho J.T.: Phys. Rev. Lett. 23, 1098 (1969)

    Article  CAS  Google Scholar 

  77. Li Y., Baberschke K.: Phys. Rev. Lett. 68, 1208 (1992)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. D. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

March, N.H., Zhang, Z.D. Statistical–mechanical models with separable many-body interactions: especially partition functions and thermodynamic consequences. J Math Chem 47, 520–538 (2010). https://doi.org/10.1007/s10910-009-9575-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-009-9575-8

Keywords

Navigation