Skip to main content
Log in

Electronic states in ordered and disordered quantum networks: with applications to graphene and to boron nanotubes

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The idea behind the original quantum network (QN) model is simple enough. One joins each atom to its nearest neighbours, and then treats electrons (though quantum mechanically of course) as though they flowed through one-dimensional wires as in an electrical circuit obeying Kirchhoff’s Laws at every node. Here we will begin with two periodic systems: namely a single graphene layer, which has recently been produced experimentally, and a two-dimensional sheet of boron atoms. This will be followed by a discussion of B nanotubes, using the simplest QN model, supplemented by comparison of these results with very recent work of other authors using density functional theory. Then the disordered quantum network (DQN) model will be treated in some detail. First of all, the main, physically motivated, steps by which Dancz, Edwards and March passed from the DQN model to the Boltzmann equation will be set out. They will then be related to substantial progress made on the mathematical solution of the DQN model by a number of authors; again a substantial part of this work invoking the Boltzmann equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Platt J.R., Ruedenberg K., Scherr C.W., Ham N.S., Labhart H., Lichten W.: Free-Electron Theory of Conjugated Molecules: A Source Book. Wiley, New York (1964)

    Google Scholar 

  2. Pauling L.: J. Chem. Phys. 4, 673 (1936)

    Article  CAS  Google Scholar 

  3. Coulson C.A.: Proc. Phys. Soc. A 67, 608 (1954)

    Article  Google Scholar 

  4. Coulson C.A.: Proc. Phys. Soc. A 68, 1129 (1955)

    Article  Google Scholar 

  5. Montroll E.W.: J. Math. Phys. 11, 635 (1970)

    Article  Google Scholar 

  6. Montroll E.W.: J. Phys. Chem. Solids 34, 597 (1973)

    Article  CAS  Google Scholar 

  7. Klein D.J., March N.H.: J. Mol. Struct. (Theochem) 337, 257 (1995)

    Article  CAS  Google Scholar 

  8. Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A.: Science 306, 666 (2004)

    Article  CAS  Google Scholar 

  9. Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Katsnelson M.I., Grigorieva I.V., Dubonos S.V., Firsov A.A.: Nature 438, 197 (2005)

    Article  CAS  Google Scholar 

  10. Novoselov K.S., Jiang D., Schedin F., Booth T.J., Khotkevich V.V., Morozov S.V., Geim A.K.: Proc. Natl. Acad. Sci. 102, 10451 (2005)

    Article  CAS  Google Scholar 

  11. Katsnelson M.I.: Mater. Today 10, 20 (2007)

    Article  CAS  Google Scholar 

  12. Kuchment P., Post O.: Commun. Math. Phys. 275, 805 (2007)

    Article  Google Scholar 

  13. Dancz J., Edwards S.F., March N.H.: J. Phys. C 6, 873 (1973)

    Article  CAS  Google Scholar 

  14. Germinet F., Hislop P.D., Klein A.: J. Eur. Math. Soc. 9, 577 (2007)

    Google Scholar 

  15. Aizenman M., Elgart A., Naboko S., Schenker J.H., Stolz G.: Invent. Math. 163, 343 (2005)

    Article  Google Scholar 

  16. Aizenman M., Sims R., Warzel S.: Probab. Theory Rel. Fields 136, 363 (2006)

    Article  Google Scholar 

  17. Aizenman M., Warzel S.: Moscow Math. J. 5, 499 (2005)

    Google Scholar 

  18. I. Veselić, Contemp. Math. 340, 97 (2004), preprint arXiv:math-ph/0307062

  19. Exner P., Helm M., Stollmann P.: Rev. Math. Phys. 19, 923 (2006)

    Article  Google Scholar 

  20. Kostrykin V., Schrader R.: Waves Random Media 14, S75 (2004)

    Article  Google Scholar 

  21. Ringwood G.A.: J. Math. Phys. 22, 96 (1981)

    Article  CAS  Google Scholar 

  22. Budgor A.B.: J. Math. Phys. 17, 1538 (1976)

    Article  Google Scholar 

  23. Leys F.E., Amovilli C., March N.H.: J. Chem. Inf. Comput. Sci. 44, 122 (2004)

    CAS  Google Scholar 

  24. Saito R., Dresselhaus G., Dresselhaus M.S.: Physical Properties of Carbon Nanotubes. Imperial College Press, London (1998)

    Google Scholar 

  25. Leys F.E., Amovilli C., March N.H.: J. Math. Chem. 36, 93 (2004)

    Article  Google Scholar 

  26. A. Badanin, J. Brüning, E. Korotyaev, I. Lobanov (2007), preprint arXiv:0707.3909

  27. A. Badanin, J. Brüning, E. Korotyaev (2007), preprint arXiv:0707.3900

  28. Cabria I., Alonso J.A., López M.J.: Phys. Status Solidi (a) 203, 1105 (2006)

    Article  CAS  Google Scholar 

  29. Vosko S.H., Wilk L., Nusair M.: Can. J. Phys. 58, 1200 (1980)

    Article  CAS  Google Scholar 

  30. Perdew J.P., Chevary J.A., Vosko S.H., Jackson K.A., Pederson M.R., Singh D.J., Fiolhais C.: Phys. Rev. B 46, 6671 (1992)

    Article  CAS  Google Scholar 

  31. Ziman J.M.: J. Phys. C 6, L361 (1973)

    Article  CAS  Google Scholar 

  32. Dancz J., Edwards S.F.: J. Phys. C 6, 3413 (1973)

    Article  CAS  Google Scholar 

  33. Dancz J., Edwards S.F.: J. Phys. C 8, 2532 (1975)

    Article  Google Scholar 

  34. K. Ruedenberg, Ch. W. Scherr, J. Chem. Phys. 21, 1565 (1953), [22, 151 (1954)]

    Google Scholar 

  35. Scherr Ch.W.: J. Chem. Phys. 21, 1582 (1953)

    Article  CAS  Google Scholar 

  36. Platt J.R.: J. Chem. Phys. 21, 1597 (1953)

    Article  CAS  Google Scholar 

  37. Scherr Ch.W.: J. Chem. Phys. 21, 1413 (1953)

    Article  CAS  Google Scholar 

  38. Frisch H.L., Lloyd S.P.: Phys. Rev. 120, 1175 (1960)

    Article  CAS  Google Scholar 

  39. Halperin B.I.: Phys. Rev. 139, A104 (1965)

    Article  Google Scholar 

  40. Lloyd P.: J. Phys. C 2, 1717 (1969)

    Article  Google Scholar 

  41. Germinet F., Klein A.: Commun. Math. Phys. 222, 415 (2001)

    Article  Google Scholar 

  42. P. Stollmann, Caught by Disorder. Bound States in Disordered Media, Progress in Mathematicl Physics (Birkhäuser, Boston, 2001)

  43. Avron J., Exner P., Last Y.: Phys. Rev. Lett. 72, 896 (1994)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. N. Angilella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

March, N.H., Angilella, G.G.N. Electronic states in ordered and disordered quantum networks: with applications to graphene and to boron nanotubes. J Math Chem 46, 532–549 (2009). https://doi.org/10.1007/s10910-008-9477-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-008-9477-1

Keywords

Navigation